Suppr超能文献

基于TCGA和ICGC数据库对肝细胞癌患者进行生存预测的自噬相关预后模型的综合分析。

Comprehensive analysis of an autophagy-related prognostic model for predicting survival based on TCGA and ICGC database in hepatocellular carcinoma patients.

作者信息

An Li-Na, Du Lei, Wang Liang-Liang, Chen Jing, Wang Xin-Rui, Duan Jian-Ping

机构信息

Department of Hepatology, Qingdao No. 6 People's Hospital, Qingdao, China.

NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, China.

出版信息

J Gastrointest Oncol. 2022 Dec;13(6):3154-3168. doi: 10.21037/jgo-22-1130.

Abstract

BACKGROUND

There is accumulating evidence that autophagic activity is crucial to the development of hepatocellular carcinoma (HCC). Thus, we sought to develop a predictive model based on autophagy-related genes (ARGs) to forecast the prognosis of HCC patients.

METHODS

Based on expression data from The Cancer Genome Atlas (TCGA) and ARGs from Human Autophagy Database (HADb), the differentially expressed ARGs were screened. The prognosis-related ARGs were identified using a univariate Cox regression analysis. Using multivariate Cox regression analysis, a prognostic model was developed. To assess the predictive value of the model, receiver operating characteristic (ROC) curve, Kaplan-Meier curve, and multivariable Cox regression analyses were conducted. A data cohort gathered independently from the International Cancer Genome Consortium (ICGC) database further verified the model's predictive accuracy. The immune landscape was generated using the TIMER and CIBERSORT algorithms. Finally, the correlation between the prognostic signature and gene mutation status was analyzed by employing "maftools" package.

RESULTS

We identified a novel prediction model based on the ARGs of and with significant prognostic values for HCC in both univariate and multivariate Cox regression analysis, and patients were classified into high- or low-risk groups based on their risk scores. High-risk patients had significantly shorter overall survival (OS) times than low-risk patients (P=5e-4). According to the ROC curve analysis, the risk score had a higher predictive value than the other clinical characteristics. Prognostic nomograms were also performed to visualize the relationship between individual predictors and survival rates in patients with HCC. Further, an external independent cohort of ICGC patients provided additional confirmation of the predictive efficacy of the model. We subsequently analyzed the differential immune densities of the two groups and discovered that various immune cells, including naïve B cells, resting memory cluster of differentiation (CD)4 T cells, regulatory T cells, M2 macrophages, and neutrophils, had considerably larger infiltrating densities in the high-risk group than the low-risk group.

CONCLUSIONS

We established a robust autophagy-related risk model having a certain prediction accuracy for predicting the prognosis of HCC patients. Our findings will contribute to the definition of prognosis and establishment of personalized treatment interventions for HCC patients.

摘要

背景

越来越多的证据表明自噬活性对肝细胞癌(HCC)的发展至关重要。因此,我们试图开发一种基于自噬相关基因(ARGs)的预测模型,以预测HCC患者的预后。

方法

基于来自癌症基因组图谱(TCGA)的表达数据和来自人类自噬数据库(HADb)的ARGs,筛选差异表达的ARGs。使用单变量Cox回归分析确定与预后相关的ARGs。通过多变量Cox回归分析,建立了一个预后模型。为了评估该模型的预测价值,进行了受试者工作特征(ROC)曲线、Kaplan-Meier曲线和多变量Cox回归分析。从国际癌症基因组联盟(ICGC)数据库独立收集的数据队列进一步验证了该模型的预测准确性。使用TIMER和CIBERSORT算法生成免疫图谱。最后,采用“maftools”软件包分析预后特征与基因突变状态之间的相关性。

结果

我们基于 和 的ARGs确定了一种新的预测模型,在单变量和多变量Cox回归分析中对HCC具有显著的预后价值,并根据风险评分将患者分为高风险或低风险组。高风险患者的总生存期(OS)明显短于低风险患者(P = 5e-4)。根据ROC曲线分析,风险评分比其他临床特征具有更高的预测价值。还进行了预后列线图,以直观显示HCC患者个体预测因子与生存率之间的关系。此外,ICGC患者的外部独立队列进一步证实了该模型的预测有效性。随后,我们分析了两组的差异免疫密度,发现包括幼稚B细胞、静息记忆分化簇(CD)4 T细胞、调节性T细胞、M2巨噬细胞和中性粒细胞在内的各种免疫细胞在高风险组中的浸润密度明显高于低风险组。

结论

我们建立了一个强大的自噬相关风险模型,对预测HCC患者的预后具有一定的预测准确性。我们的研究结果将有助于定义HCC患者的预后并建立个性化治疗干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00d0/9830320/958ec78e0b89/jgo-13-06-3154-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验