Suppr超能文献

一种用于道路场景下垃圾检测的相似性引导分割模型。

A similarity-guided segmentation model for garbage detection under road scene.

作者信息

Zheng Caiyun, Cao Danhua, Hu Cheng

机构信息

School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.

出版信息

Front Optoelectron. 2022 May 12;15(1):22. doi: 10.1007/s12200-022-00004-9.

Abstract

The development of computer vision technology provides a possible path for realizing intelligent control of road sweepers to reduce energy waste in urban street cleaning work. For garbage segmentation of seven categories under road scene, we introduce an efficient deep-learning-based method. Our model follows a lightweight structure with a feature pyramid attention (FPA) module employed in the decoder to enhance feature integration at multi-levels. Besides, a similarity guidance (SG) module is added to the decoder branches, which calculates the cosine distance between learned prototypes and feature maps to guide the segmentation results from a metric learning perspective. Our model has less than 3 M parameters and can run at over 65 FPS in an RTX 2070 GPU. Experimental results demonstrate that our method can yield competitive results in terms of speed and accuracy trade-off, with overall mean intersection-over-union (mIoU) reaching 0.87 and 0.67, respectively, on two garbage data sets we built. Besides, our model can perform acceptable category-balanced segmentation from less than 20 annotated images per category by introducing the SG module.

摘要

计算机视觉技术的发展为实现道路清扫车的智能控制以减少城市街道清洁工作中的能源浪费提供了一条可能的途径。针对道路场景下七类垃圾的分割,我们引入了一种基于深度学习的高效方法。我们的模型采用轻量级结构,在解码器中使用特征金字塔注意力(FPA)模块来增强多级别特征融合。此外,在解码器分支中添加了相似度引导(SG)模块,该模块计算学习到的原型与特征图之间的余弦距离,从度量学习的角度指导分割结果。我们的模型参数少于300万,在RTX 2070 GPU上运行速度超过65帧每秒。实验结果表明,我们的方法在速度和准确性权衡方面能够产生具有竞争力的结果,在我们构建的两个垃圾数据集上,总体平均交并比(mIoU)分别达到0.87和0.67。此外,通过引入SG模块,我们的模型可以从每类少于20张标注图像中进行可接受的类别平衡分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验