Suppr超能文献

LOANet:一种使用目标注意力从无人机航空遥感图像中提取建筑物和道路的轻量级网络。

LOANet: a lightweight network using object attention for extracting buildings and roads from UAV aerial remote sensing images.

作者信息

Han Xiaoxiang, Liu Yiman, Liu Gang, Lin Yuanjie, Liu Qiaohong

机构信息

School of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China.

School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.

出版信息

PeerJ Comput Sci. 2023 Jul 11;9:e1467. doi: 10.7717/peerj-cs.1467. eCollection 2023.

Abstract

Semantic segmentation for extracting buildings and roads from uncrewed aerial vehicle (UAV) remote sensing images by deep learning becomes a more efficient and convenient method than traditional manual segmentation in surveying and mapping fields. In order to make the model lightweight and improve the model accuracy, a lightweight network using object attention (LOANet) for buildings and roads from UAV aerial remote sensing images is proposed. The proposed network adopts an encoder-decoder architecture in which a lightweight densely connected network (LDCNet) is developed as the encoder. In the decoder part, the dual multi-scale context modules which consist of the atrous spatial pyramid pooling module (ASPP) and the object attention module (OAM) are designed to capture more context information from feature maps of UAV remote sensing images. Between ASPP and OAM, a feature pyramid network (FPN) module is used to fuse multi-scale features extracted from ASPP. A private dataset of remote sensing images taken by UAV which contains 2431 training sets, 945 validation sets, and 475 test sets is constructed. The proposed basic model performs well on this dataset, with only 1.4M parameters and 5.48G floating point operations (FLOPs), achieving excellent mean Intersection-over-Union (mIoU). Further experiments on the publicly available LoveDA and CITY-OSM datasets have been conducted to further validate the effectiveness of the proposed basic and large model, and outstanding mIoU results have been achieved. All codes are available on https://github.com/GtLinyer/LOANet.

摘要

在测绘领域,通过深度学习从无人机(UAV)遥感图像中提取建筑物和道路的语义分割,成为一种比传统手动分割更高效、便捷的方法。为了使模型轻量化并提高模型精度,提出了一种用于从无人机航空遥感图像中提取建筑物和道路的基于目标注意力的轻量化网络(LOANet)。所提出的网络采用编码器-解码器架构,其中开发了一种轻量化密集连接网络(LDCNet)作为编码器。在解码器部分,设计了由空洞空间金字塔池化模块(ASPP)和目标注意力模块(OAM)组成的双多尺度上下文模块,以从无人机遥感图像的特征图中捕获更多上下文信息。在ASPP和OAM之间,使用特征金字塔网络(FPN)模块融合从ASPP提取的多尺度特征。构建了一个包含2431个训练集、945个验证集和475个测试集的无人机拍摄遥感图像私有数据集。所提出的基础模型在该数据集上表现良好,仅具有140万个参数和54.8亿次浮点运算(FLOPs),实现了出色的平均交并比(mIoU)。在公开可用的LoveDA和CITY-OSM数据集上进行了进一步实验,以进一步验证所提出的基础模型和大型模型的有效性,并取得了出色的mIoU结果。所有代码可在https://github.com/GtLinyer/LOANet上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a4/10403170/10f802932c9c/peerj-cs-09-1467-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验