Suppr超能文献

一种基于边缘细化和高效自注意力机制的内窥镜手术器械轻量级分割网络。

A lightweight segmentation network for endoscopic surgical instruments based on edge refinement and efficient self-attention.

作者信息

Zhou Mengyu, Han Xiaoxiang, Liu Zhoujin, Chen Yitong, Sun Liping

机构信息

School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai, P.R.China.

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.

出版信息

PeerJ Comput Sci. 2023 Dec 11;9:e1746. doi: 10.7717/peerj-cs.1746. eCollection 2023.

Abstract

In robot-assisted surgical systems, surgical instrument segmentation is a critical task that provides important information for surgeons to make informed decisions and ensure surgical safety. However, current mainstream models often lack precise segmentation edges and suffer from an excess of parameters, rendering their deployment challenging. To address these issues, this article proposes a lightweight semantic segmentation model based on edge refinement and efficient self-attention. The proposed model utilizes a lightweight densely connected network for feature extraction, which is able to extract high-quality semantic information with fewer parameters. The decoder combines a feature pyramid module with an efficient criss-cross self-attention module. This fusion integrates multi-scale data, strengthens focus on surgical instrument details, and enhances edge segmentation accuracy. To train and evaluate the proposed model, the authors developed a private dataset of endoscopic surgical instruments. It containing 1,406 images for training, 469 images for validation and 469 images for testing. The proposed model performs well on this dataset with only 466 K parameters, achieving a mean Intersection over Union (mIoU) of 97.11%. In addition, the model was trained on public datasets Kvasir-instrument and Endovis2017. Excellent results of 93.24% and 95.83% were achieved on the indicator mIoU, respectively. The superiority and effectiveness of the method are proved. Experimental results show that the proposed model has lower parameters and higher accuracy than other state-of-the-art models. The proposed model thus lays the foundation for further research in the field of surgical instrument segmentation.

摘要

在机器人辅助手术系统中,手术器械分割是一项关键任务,它为外科医生提供重要信息,以便他们做出明智的决策并确保手术安全。然而,当前的主流模型往往缺乏精确的分割边缘,并且参数过多,这使得它们的部署具有挑战性。为了解决这些问题,本文提出了一种基于边缘细化和高效自注意力的轻量级语义分割模型。所提出的模型利用轻量级密集连接网络进行特征提取,能够以较少的参数提取高质量的语义信息。解码器将特征金字塔模块与高效的十字交叉自注意力模块相结合。这种融合整合了多尺度数据,加强了对手术器械细节的关注,并提高了边缘分割精度。为了训练和评估所提出的模型,作者开发了一个内窥镜手术器械的私有数据集。它包含1406张用于训练的图像、469张用于验证的图像和469张用于测试的图像。所提出的模型在这个数据集上表现良好,仅具有466K个参数,平均交并比(mIoU)达到97.11%。此外,该模型还在公共数据集Kvasir-instrument和Endovis2017上进行了训练。在mIoU指标上分别取得了93.24%和95.83%的优异成绩。证明了该方法的优越性和有效性。实验结果表明,所提出的模型比其他现有模型具有更低的参数和更高的准确性。因此,所提出的模型为手术器械分割领域的进一步研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ae/10803021/1c3da9e07817/peerj-cs-09-1746-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验