Suppr超能文献

随机神经网络中的深度学习:基于神经切核的数值实验。

Deep learning in random neural fields: Numerical experiments via neural tangent kernel.

机构信息

Araya Inc., 1-12-32 Akasaka, Minato-ku, Tokyo 107-6024, Japan; LPIXEL Inc., 1-6-1, Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.

The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-0014, Japan.

出版信息

Neural Netw. 2023 Mar;160:148-163. doi: 10.1016/j.neunet.2022.12.020. Epub 2023 Jan 4.

Abstract

A biological neural network in the cortex forms a neural field. Neurons in the field have their own receptive fields, and connection weights between two neurons are random but highly correlated when they are in close proximity in receptive fields. In this paper, we investigate such neural fields in a multilayer architecture to investigate the supervised learning of the fields. We empirically compare the performances of our field model with those of randomly connected deep networks. The behavior of a randomly connected network is investigated on the basis of the key idea of the neural tangent kernel regime, a recent development in the machine learning theory of over-parameterized networks; for most randomly connected neural networks, it is shown that global minima always exist in their small neighborhoods. We numerically show that this claim also holds for our neural fields. In more detail, our model has two structures: (i) each neuron in a field has a continuously distributed receptive field, and (ii) the initial connection weights are random but not independent, having correlations when the positions of neurons are close in each layer. We show that such a multilayer neural field is more robust than conventional models when input patterns are deformed by noise disturbances. Moreover, its generalization ability can be slightly superior to that of conventional models.

摘要

皮质中的生物神经网络形成神经场。该场中的神经元具有自己的感受野,当它们在感受野中近距离时,两个神经元之间的连接权重是随机的,但高度相关。在本文中,我们研究了这种具有多层结构的神经场,以研究场的监督学习。我们通过实证比较了我们的场模型与随机连接的深度网络的性能。在过参数化网络的机器学习理论的最新进展——神经切空间核(neural tangent kernel)理论的关键思想的基础上,研究了随机连接网络的行为;对于大多数随机连接的神经网络,表明它们的小邻域中总是存在全局最小值。我们通过数值计算表明,这一结论也适用于我们的神经场。更详细地说,我们的模型有两种结构:(i)场中的每个神经元都有连续分布的感受野,(ii)初始连接权重是随机的,但不是独立的,当各层中的神经元位置接近时,它们具有相关性。我们表明,当输入模式受到噪声干扰时,这种多层神经场比传统模型更具鲁棒性。此外,它的泛化能力略优于传统模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验