Suppr超能文献

开发和评估一种基于机器学习的算法,利用普通监测仪和呼吸机的连续无创参数预测 ARDS 的发病率和严重程度。

Developing and evaluating a machine-learning-based algorithm to predict the incidence and severity of ARDS with continuous non-invasive parameters from ordinary monitors and ventilators.

机构信息

Chongqing Medical and Pharmaceutical College, Chongqing, China.

Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing, China.

出版信息

Comput Methods Programs Biomed. 2023 Mar;230:107328. doi: 10.1016/j.cmpb.2022.107328. Epub 2022 Dec 29.

Abstract

OBJECTIVES

Major observational studies report that the mortality rate of acute respiratory distress syndrome (ARDS) is close to 40%. Different treatment strategies are required for each patient, according to the degree of ARDS. Early prediction of ARDS is helpful to implement targeted drug therapy and mechanical ventilation strategies for patients with different degrees of potential ARDS. In this paper, a new dynamic prediction machine learning model for ARDS incidence and severity is established and evaluated based on 28 parameters from ordinary monitors and ventilators, capable of dynamic prediction of the incidence and severity of ARDS. This new method is expected to meet the clinical practice requirements of user-friendliness and timeliness for wider application.

METHODS

A total of 4738 hospitalized patients who required ICU care from 159 hospitals are employed in this study. The models are trained by standardized data from electronic medical records. There are 28 structured, continuous non-invasive parameters that are recorded every hour. Seven machine learning models using only continuous, non-invasive parameters are developed for dynamic prediction and compared with methods trained by complete parameters and the traditional risk adjustment method (i.e., oxygenation saturation index method).

RESULTS

The optimal prediction performance (area under the curve) of the ARDS incidence and severity prediction models built using continuous noninvasive parameters reached0.8691 and 0.7765, respectively. In terms of mild and severe ARDS prediction, the AUC values are both above 0.85. The performance of the model using only continuous non-invasive parameters have an AUC of 0.0133 lower, in comparison with that employing a complete feature set, including continuous non-invasive parameters, demographic information, laboratory parameters and clinical natural language text.

CONCLUSIONS

A machine learning method was developed in this study using only continuous non-invasive parameters for ARDS incidence and severity prediction. Because the continuous non-invasive parameters can be easily obtained from ordinary monitors and ventilators, the method presented in this study is friendly and convenient to use. It is expected to be applied in pre-hospital setting for early ARDS warning.

摘要

目的

多项大型观察性研究报告称,急性呼吸窘迫综合征(ARDS)的死亡率接近 40%。根据 ARDS 的严重程度,每位患者需要不同的治疗策略。早期预测 ARDS 有助于对潜在 ARDS 不同程度的患者实施靶向药物治疗和机械通气策略。本文基于普通监护仪和呼吸机的 28 个参数,建立并评估了一种新的 ARDS 发生率和严重程度的动态预测机器学习模型,能够对 ARDS 的发生率和严重程度进行动态预测。这种新方法有望满足用户友好性和及时性的临床实践要求,以实现更广泛的应用。

方法

本研究共纳入来自 159 家医院的 4738 名需要 ICU 护理的住院患者。通过电子病历的标准化数据对模型进行训练。有 28 个结构化的、连续的非侵入性参数,每小时记录一次。为了进行动态预测,开发了 7 种仅使用连续、非侵入性参数的机器学习模型,并与使用完整参数和传统风险调整方法(即氧合饱和度指数法)训练的方法进行比较。

结果

使用连续非侵入性参数构建的 ARDS 发生率和严重程度预测模型的最佳预测性能(曲线下面积)分别达到 0.8691 和 0.7765。在轻度和重度 ARDS 预测方面,AUC 值均高于 0.85。仅使用连续非侵入性参数的模型性能比使用完整特征集(包括连续非侵入性参数、人口统计学信息、实验室参数和临床自然语言文本)的模型低 0.0133。

结论

本研究使用仅连续非侵入性参数开发了一种用于 ARDS 发生率和严重程度预测的机器学习方法。由于连续非侵入性参数可以从普通监护仪和呼吸机中轻松获得,因此本研究提出的方法使用方便、友好。预计它将应用于院前环境中,以实现早期 ARDS 预警。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验