Suppr超能文献

利用机器学习预测急性呼吸窘迫综合征患者的 ICU 死亡率:急性呼吸窘迫综合征预后和严重程度分层(POSTCARDS)研究。

Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study.

机构信息

CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.

Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain.

出版信息

Crit Care Med. 2023 Dec 1;51(12):1638-1649. doi: 10.1097/CCM.0000000000006030. Epub 2023 Aug 31.

Abstract

OBJECTIVES

To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS).

DESIGN

A development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts.

SETTING

A network of multidisciplinary ICUs.

PATIENTS

A total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation.

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

We developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pa o2 /F io2 , inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94).

CONCLUSIONS

Both machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management.

摘要

目的

评估机器学习方法在开发用于预测急性呼吸窘迫综合征(ARDS)患者 ICU 死亡的多变量模型中的价值。

设计

使用来自四个前瞻性、多中心、观察性队列的临床数据进行开发、测试和外部验证研究。

地点

多学科 ICU 网络。

患者

共纳入 1303 例接受肺保护性通气治疗的中重度 ARDS 患者。

干预措施

无。

测量和主要结果

我们在 1000 例 ARDS 患者中开发和测试了预测模型。我们采用遗传算法、随机森林和极端梯度增强机器学习技术进行变量选择后,进行逻辑回归分析。潜在预测因子包括人口统计学、合并症、通气和氧合描述符以及肺外器官衰竭。风险建模确定了 ICU 死亡率的一些主要预后因素,包括年龄、癌症、免疫抑制、Pa o2 /F io2 、吸气平台压和肺外器官衰竭的数量。这些特征共同包含了前 24 小时预测 ICU 死亡率的大部分预后信息。机器学习方法的性能与逻辑回归相似(受试者工作特征曲线下面积 [AUC],0.87;95%CI,0.82-0.91)。在 303 例 ARDS 患者的独立队列中进行外部验证证实,该模型的性能与逻辑回归模型相似(AUC,0.91;95%CI,0.87-0.94)。

结论

机器学习和传统方法都可以生成有前途的模型来预测中重度 ARDS 患者的 ICU 死亡。需要进一步研究以确定除临床决定因素(如人口统计学、合并症、肺力学、氧合和肺外器官衰竭)之外的严重程度标志物,以指导患者管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验