Suppr超能文献

机器学习模型在 ARDS 管理、预测和分类中的系统评价。

A systematic review of machine learning models for management, prediction and classification of ARDS.

机构信息

Department of Engineering and Science, University of Oxford, Oxford, UK.

Nuffield Department of Clinical Neurosciences, Oxford Institute of Biomedical Engineering, University of Oxford, Oxford, UK.

出版信息

Respir Res. 2024 Jun 4;25(1):232. doi: 10.1186/s12931-024-02834-x.

Abstract

AIM

Acute respiratory distress syndrome or ARDS is an acute, severe form of respiratory failure characterised by poor oxygenation and bilateral pulmonary infiltrates. Advancements in signal processing and machine learning have led to promising solutions for classification, event detection and predictive models in the management of ARDS.

METHOD

In this review, we provide systematic description of different studies in the application of Machine Learning (ML) and artificial intelligence for management, prediction, and classification of ARDS. We searched the following databases: Google Scholar, PubMed, and EBSCO from 2009 to 2023. A total of 243 studies was screened, in which, 52 studies were included for review and analysis. We integrated knowledge of previous work providing the state of art and overview of explainable decision models in machine learning and have identified areas for future research.

RESULTS

Gradient boosting is the most common and successful method utilised in 12 (23.1%) of the studies. Due to limitation of data size available, neural network and its variation is used by only 8 (15.4%) studies. Whilst all studies used cross validating technique or separated database for validation, only 1 study validated the model with clinician input. Explainability methods were presented in 15 (28.8%) of studies with the most common method is feature importance which used 14 times.

CONCLUSION

For databases of 5000 or fewer samples, extreme gradient boosting has the highest probability of success. A large, multi-region, multi centre database is required to reduce bias and take advantage of neural network method. A framework for validating with and explaining ML model to clinicians involved in the management of ARDS would be very helpful for development and deployment of the ML model.

摘要

目的

急性呼吸窘迫综合征(ARDS)是一种急性、严重的呼吸衰竭,其特征为氧合差和双侧肺部浸润。信号处理和机器学习的进步为 ARDS 的管理、分类、事件检测和预测模型提供了有前途的解决方案。

方法

在本综述中,我们系统地描述了机器学习(ML)和人工智能在 ARDS 管理、预测和分类中的不同应用研究。我们搜索了以下数据库:Google Scholar、PubMed 和 EBSCO 从 2009 年到 2023 年。共筛选出 243 项研究,其中 52 项研究纳入综述和分析。我们整合了先前工作的知识,提供了机器学习中可解释决策模型的现状和概述,并确定了未来研究的领域。

结果

梯度提升是 12 项研究(23.1%)中最常用和最成功的方法。由于可用数据量的限制,神经网络及其变体仅在 8 项研究(15.4%)中使用。虽然所有研究都使用交叉验证技术或分离数据库进行验证,但只有 1 项研究使用临床医生的输入验证了模型。在 15 项研究(28.8%)中提出了可解释性方法,最常见的方法是特征重要性,共使用了 14 次。

结论

对于样本量在 5000 个或更少的数据库,极端梯度提升成功的可能性最高。需要一个大型的、多区域、多中心数据库来减少偏差,并利用神经网络方法。为参与 ARDS 管理的临床医生验证和解释 ML 模型的框架将非常有助于 ML 模型的开发和部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7f/11151485/74f89c8b5cbd/12931_2024_2834_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验