Suppr超能文献

中阶数据融合拉曼光谱和激光诱导击穿光谱:提高矿石识别准确率。

Mid-level data fusion of Raman spectroscopy and laser-induced breakdown spectroscopy: Improving ores identification accuracy.

机构信息

College of Physics and Opto-electronic Engineering, Ocean University of China, Qingdao 266100, China; Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

College of Physics and Opto-electronic Engineering, Ocean University of China, Qingdao 266100, China.

出版信息

Anal Chim Acta. 2023 Feb 1;1240:340772. doi: 10.1016/j.aca.2022.340772. Epub 2022 Dec 30.

Abstract

The identification of ore samples is of great scientific significance for mineral exploration, and geological evolution research on the planets. Attributed to the changes in the composition and structure of the same ore, the fusion of multiple technologies can effectively meet the comprehensive and accurate analysis of actual samples compared with a single technology. We develop an efficient method of applying the combination of Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) to ores identification. We construct a convolutional neural network (CNN) model and train it with mid-level Raman-LIBS fusion spectra of ores. Also, we develop a hybrid feature selection method AVPSO based on analysis of variance (ANOVA) with the particle swarm optimization (PSO) to improve the classification performance of the model. Compared with the model features visualized by Grad-CAM method, the similarity selected features verify the effectiveness of the AVPSO method. The identification of mid-level fusion strategy provides the best accuracy of 98%, while the accuracies of Raman and LIBS are slightly lower with values of 87.9% and 91.3%, respectively. The proposed method is of great significance for the rapid and accurate identification of ore samples.

摘要

矿石样本的识别对于矿产勘查和行星地质演化研究具有重要的科学意义。由于同种矿石的成分和结构发生变化,与单一技术相比,多种技术的融合可以有效地满足实际样本的综合和准确分析。我们开发了一种将拉曼光谱和激光诱导击穿光谱(LIBS)相结合的高效方法来识别矿石。我们构建了一个卷积神经网络(CNN)模型,并使用矿石的中阶拉曼-LIBS 融合光谱对其进行训练。此外,我们还开发了一种基于方差分析(ANOVA)和粒子群优化(PSO)的混合特征选择方法 AVPSO,以提高模型的分类性能。与 Grad-CAM 方法可视化的模型特征相比,相似性选择的特征验证了 AVPSO 方法的有效性。中阶融合策略的识别提供了最佳的 98%准确率,而拉曼和 LIBS 的准确率略低,分别为 87.9%和 91.3%。该方法对于矿石样本的快速准确识别具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验