Han Zhu, Zhao Jiandong, Tang Yu, Wang Yi
Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Tonghua Guhong Pharmaceutical Co., Ltd., 5099 Jianguo Road, Meihekou, 135099, China.
Chin Med. 2024 Jan 2;19(1):2. doi: 10.1186/s13020-023-00873-y.
Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard analysis results as different classes of structures always possess distinct physicochemical properties. Whereas representing a workaround for multi-target standardization using multi-modal data, data processing for information from diverse sources is of great importance for the accuracy of classification.
In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative H NMR (qHNMR), of which data obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs.
The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) are inadequate for accurately assessing the product's quality. The mid-level data fusion strategy for the quality evaluation enabled the classification of normal and abnormal batches of GHIs at 100% accuracy.
A quality assessment strategy was successfully developed by leveraging a mid-level data fusion method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.
植物药(BDs)批次间一致性的测定长期以来一直是质量评估的瓶颈,主要原因是植物药固有的化学多样性。这种多样性给实现植物药的全面标准化带来了障碍。基本上,单一的检测模式可能会导致分析结果不合格,因为不同类别的结构总是具有不同的物理化学性质。而作为使用多模态数据进行多目标标准化的一种解决方法,对来自不同来源的信息进行数据处理对于分类的准确性至关重要。
在本研究中,通过高效液相色谱-紫外检测法(HPLC-UV)、蒸发光散射检测法(ELSD)和定量氢核磁共振(qHNMR)获取了78批次骨红注射液(GHIs)的多模态数据,其中包括52个正常样品和26个异常样品,然后将获得的数据分别用于计算皮尔逊相关系数(PCC)和偏最小二乘判别分析(PLS-DA)。然后,采用一种包含定性和定量信息的数据的中级数据融合方法,建立支持向量机(SVM)模型来评估骨红注射液的批次间一致性。
结果表明,来自单一检测模式的数据集(例如仅来自紫外检测器的数据)不足以准确评估产品质量。用于质量评估的中级数据融合策略能够以100%的准确率对骨红注射液的正常批次和异常批次进行分类。
通过利用中级数据融合方法对骨红注射液的批次间一致性进行评估,成功开发了一种质量评估策略。本研究突出了来自不同检测模式的数据在植物药质量评估中的潜在用途。它还提醒制造商和研究人员注意采用数据融合来处理多模态数据的优势。特别是当联合进行时,这种策略可以显著提高产品分类的准确性,并成为研究其他植物药的有力工具。