Miller Matthew, Michaels-Obregón Alejandra, Rocha Karina Orozco, Wong Rebeca
University of Texas Medical Branch, Sealy Center on Aging, Galveston Texas, United States.
Facultad de Economía, Universidad de Colima.
Real Datos Espacio. 2022 May-Aug;13(2):78-93.
The way missing data in population surveys are treated can influence research results. Therefore, the aim of this paper is to explain the reasons and procedure for imputing anthropometric data such as height and weight self-reported by individuals in the first four waves of the Mexican Health & Aging Study (MHAS). We highlight the effect of the imputation versus the exclusion of the cases with missing data, by comparing the distribution of these values and their associated effects on the Body Mass Index using a regression model. We conclude that the incorporation of imputed data offers more solid results compared with elimination the cases with missing data. Hence the importance of applying these statistical procedures, with appropriate treatment of the data, making the methodology and the imputed data available to the users by the same source of information, as offered in the MHAS.
人口调查中缺失数据的处理方式会影响研究结果。因此,本文旨在解释在墨西哥健康与老龄化研究(MHAS)的前四波调查中,对个体自我报告的身高和体重等人体测量数据进行插补的原因和程序。通过使用回归模型比较这些数值的分布及其对体重指数的相关影响,我们突出了插补与排除缺失数据情况的效果。我们得出结论,与剔除缺失数据的情况相比,纳入插补数据能提供更可靠的结果。因此,应用这些统计程序并对数据进行适当处理非常重要,要像MHAS所提供的那样,通过同一信息源向用户提供方法和插补数据。