Suppr超能文献

墨西哥健康与老龄化研究中身高和体重无应答情况的插补

Imputation of Non-Response in Height and Weight in the Mexican Health and Aging Study.

作者信息

Miller Matthew, Michaels-Obregón Alejandra, Rocha Karina Orozco, Wong Rebeca

机构信息

University of Texas Medical Branch, Sealy Center on Aging, Galveston Texas, United States.

Facultad de Economía, Universidad de Colima.

出版信息

Real Datos Espacio. 2022 May-Aug;13(2):78-93.

Abstract

The way missing data in population surveys are treated can influence research results. Therefore, the aim of this paper is to explain the reasons and procedure for imputing anthropometric data such as height and weight self-reported by individuals in the first four waves of the Mexican Health & Aging Study (MHAS). We highlight the effect of the imputation versus the exclusion of the cases with missing data, by comparing the distribution of these values and their associated effects on the Body Mass Index using a regression model. We conclude that the incorporation of imputed data offers more solid results compared with elimination the cases with missing data. Hence the importance of applying these statistical procedures, with appropriate treatment of the data, making the methodology and the imputed data available to the users by the same source of information, as offered in the MHAS.

摘要

人口调查中缺失数据的处理方式会影响研究结果。因此,本文旨在解释在墨西哥健康与老龄化研究(MHAS)的前四波调查中,对个体自我报告的身高和体重等人体测量数据进行插补的原因和程序。通过使用回归模型比较这些数值的分布及其对体重指数的相关影响,我们突出了插补与排除缺失数据情况的效果。我们得出结论,与剔除缺失数据的情况相比,纳入插补数据能提供更可靠的结果。因此,应用这些统计程序并对数据进行适当处理非常重要,要像MHAS所提供的那样,通过同一信息源向用户提供方法和插补数据。

相似文献

4
Missing data on the Center for Epidemiologic Studies Depression Scale: a comparison of 4 imputation techniques.
Res Social Adm Pharm. 2007 Mar;3(1):1-27. doi: 10.1016/j.sapharm.2006.04.001.
5
Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study.
BMC Med Res Methodol. 2019 Jul 23;19(1):161. doi: 10.1186/s12874-019-0793-x.
6
[Predictive Mean Matching as an alternative imputation method to hot deck in Vigitel].
Cad Saude Publica. 2020 Jun 26;36(6):e00167219. doi: 10.1590/0102-311X00167219. eCollection 2020.
7
Dealing with missing data in a multi-question depression scale: a comparison of imputation methods.
BMC Med Res Methodol. 2006 Dec 13;6:57. doi: 10.1186/1471-2288-6-57.
8
Missing data imputation in quality-of-life assessment: imputation for WHOQOL-BREF.
Pharmacoeconomics. 2006;24(9):917-25. doi: 10.2165/00019053-200624090-00008.
10
Do Missing Values Influence Outcomes in a Cross-sectional Mail Survey?
Mayo Clin Proc Innov Qual Outcomes. 2021 Jan 19;5(1):84-93. doi: 10.1016/j.mayocpiqo.2020.09.006. eCollection 2021 Feb.

引用本文的文献

1
The impact of insomnia symptoms on obesity among Mexicans aged 50 and older.
Salud Publica Mex. 2023 Sep 15;65(5, sept-oct):530-541. doi: 10.21149/14759.

本文引用的文献

1
[Not Available].
Papeles Poblac. 2021;27(107):141-165. doi: 10.22185/24487147.2021.107.06. Epub 2021 Apr 13.
2
Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms.
Circulation. 2020 Jul 7;142(1):4-6. doi: 10.1161/CIRCULATIONAHA.120.047659. Epub 2020 Apr 22.
6
Impact of Missing Data for Body Mass Index in an Epidemiologic Study.
Matern Child Health J. 2016 Jul;20(7):1497-505. doi: 10.1007/s10995-016-1948-6.
7
The effect of obesity on incidence of disability and mortality in Mexicans aged 50 years and older.
Salud Publica Mex. 2015;57 Suppl 1(0 1):S31-8. doi: 10.21149/spm.v57s1.7587.
8
Adult obesity, disease and longevity in Mexico.
Salud Publica Mex. 2015;57 Suppl 1(0 1):S22-30. doi: 10.21149/spm.v57s1.7586.
9
The identification, impact and management of missing values and outlier data in nutritional epidemiology.
Nutr Hosp. 2015 Feb 26;31 Suppl 3:189-95. doi: 10.3305/nh.2015.31.sup3.8766.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验