Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.
Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China.
Commun Biol. 2023 Jan 17;6(1):56. doi: 10.1038/s42003-023-04451-8.
Phytopathogenic bacteria play important roles in plant productivity, and developments in gene editing have potential for enhancing the genetic tools for the identification of critical genes in the pathogenesis process. CRISPR-based genome editing variants have been developed for a wide range of applications in eukaryotes and prokaryotes. However, the unique mechanisms of different hosts restrict the wide adaptation for specific applications. Here, CRISPR-dCas9 (dead Cas9) and nCas9 (Cas9 nickase) deaminase vectors were developed for a broad range of phytopathogenic bacteria. A gene for a dCas9 or nCas9, cytosine deaminase CDA1, and glycosylase inhibitor fusion protein (cytosine base editor, or CBE) was applied to base editing under the control of different promoters. Results showed that the RecA promoter led to nearly 100% modification of the target region. When residing on the broad host range plasmid pHM1, CBE is efficient in creating base edits in strains of Xanthomonas, Pseudomonas, Erwinia and Agrobacterium. CBE based on nCas9 extended the editing window and produced a significantly higher editing rate in Pseudomonas. Strains with nonsynonymous mutations in test genes displayed expected phenotypes. By multiplexing guide RNA genes, the vectors can modify up to four genes in a single round of editing. Whole-genome sequencing of base-edited isolates of Xanthomonas oryzae pv. oryzae revealed guide RNA-independent off-target mutations. Further modifications of the CBE, using a CDA1 variant (CBE-A) reduced off-target effects, providing an improved editing tool for a broad group of phytopathogenic bacteria.
植物病原细菌在植物生产力中发挥着重要作用,基因编辑技术的发展为鉴定发病过程中的关键基因提供了潜在的遗传工具。基于 CRISPR 的基因组编辑变体已被开发用于真核生物和原核生物的广泛应用。然而,不同宿主的独特机制限制了其在特定应用中的广泛适应性。在这里,开发了用于广泛的植物病原细菌的 CRISPR-dCas9(失活 Cas9)和 nCas9(Cas9 切口酶)脱氨酶载体。dCas9 或 nCas9、胞嘧啶脱氨酶 CDA1 和糖苷酶抑制剂融合蛋白(胞嘧啶碱基编辑器或 CBE)的基因被应用于不同启动子控制下的碱基编辑。结果表明,RecA 启动子导致靶区域几乎 100%的修饰。当驻留在广谱宿主范围质粒 pHM1 上时,CBE 在黄单胞菌、假单胞菌、欧文氏菌和根癌农杆菌的菌株中有效地进行碱基编辑。基于 nCas9 的 CBE 扩展了编辑窗口,并在假单胞菌中产生了更高的编辑率。在测试基因中具有非同义突变的菌株表现出预期的表型。通过多路复用向导 RNA 基因,载体可以在单个编辑回合中修饰多达四个基因。对稻黄单胞菌 pv.oryzae 的碱基编辑分离株进行全基因组测序显示,向导 RNA 非依赖性的脱靶突变。使用 CDA1 变体(CBE-A)对 CBE 进行进一步修饰可降低脱靶效应,为广泛的植物病原细菌提供了一种改进的编辑工具。