Suppr超能文献

纤维蛋白纤维变形机制:从唯象建模到分子细节的见解

Fibrin fiber deformation mechanisms: insights from phenomenological modeling to molecular details.

作者信息

Filla Nicholas, Zhao Yiping, Wang Xianqiao

机构信息

School of ECAM, College of Engineering, University of Georgia, Athens, GA, 30602, USA.

Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA.

出版信息

Biomech Model Mechanobiol. 2023 Jun;22(3):851-869. doi: 10.1007/s10237-022-01685-z. Epub 2023 Jan 17.

Abstract

The deformation mechanism of fibrin fibers has been a long-standing challenge to uncover due to the fiber's complex structure and mechanical behaviors. In this paper, a phenomenological, bilinear, force-strain model is derived to accurately reproduce the fibrin fiber force-strain curve, and then, the phenomenological model is converted to a mechanistic model using empirical relationships developed from particle simulation data. The mechanistic model assumes that the initial linear fibrin fiber force-strain response is due to entropic extension of polypeptide chains, and the final linear response is due to enthalpic extension of protofibrils. This model is the first fibrin fiber tensile force-strain equation to simultaneously (1) reproduce the bilinear force-strain curve of fibrin fibers in tension; (2) explicitly include the number of protofibrils through the fibrin fiber cross section, persistence length of [Formula: see text]-regions, and stiffness of fibrin protofibrils; and (3) make demonstrably reasonable/accurate predictions of fibrin fiber mechanics when tempered against experimental results. The model predicted that the count of protofibrils through the cross section for the analyzed fibrin fibers is between 207 and 421, the persistence length of [Formula: see text]-regions is [Formula: see text], and the stiffness of protofibrils in a deforming fiber is [Formula: see text]. The predicted [Formula: see text]-region persistence length is within the range typical of amino acid residue lengths [Formula: see text] and the predicted protofibril stiffness is shown to correspond to half-staggered protofibrils of unfolded fibrin monomers. Our analysis supports the proposition that entropic extension of [Formula: see text]-regions could be responsible for fibrin fiber's initial force-strain stiffness and suggests a structural change in fibrin protofibrils during fibrin fiber deformation. The results from the model are compared to those from five candidate deformation mechanisms reported in the literature. Our work provides (1) strong quantitative support to a deformation mechanism that was previously supported by anecdote and qualitative argument, and (2) a model for rigorously analyzing fibrin fiber force-strain data and simulating fibrin fibers in tension.

摘要

由于纤维蛋白纤维结构复杂且力学行为多样,其变形机制一直是个难以揭示的长期挑战。本文推导了一个唯象的双线性力-应变模型,以精确再现纤维蛋白纤维的力-应变曲线,然后利用从粒子模拟数据得出的经验关系将该唯象模型转换为一个机理模型。该机理模型假定,纤维蛋白纤维最初的线性力-应变响应是由于多肽链的熵弹性伸展,而最终的线性响应是由于原纤维的焓弹性伸展。此模型是首个纤维蛋白纤维拉伸力-应变方程,它能同时:(1) 再现纤维蛋白纤维拉伸时的双线性力-应变曲线;(2) 通过纤维蛋白纤维横截面明确纳入原纤维数量、α-区域的持久长度以及纤维蛋白原纤维的刚度;(3) 与实验结果对照时,对纤维蛋白纤维力学做出明显合理/准确的预测。该模型预测,所分析的纤维蛋白纤维横截面的原纤维数量在207至421之间,α-区域的持久长度为[公式:见原文],变形纤维中原纤维的刚度为[公式:见原文]。预测的α-区域持久长度在氨基酸残基长度[公式:见原文]的典型范围内,且预测的原纤维刚度显示对应于未折叠纤维蛋白单体的半交错原纤维。我们的分析支持这样的观点,即α-区域的熵弹性伸展可能是纤维蛋白纤维初始力-应变刚度的原因,并表明纤维蛋白原纤维在纤维蛋白纤维变形过程中发生了结构变化。将该模型的结果与文献中报道的五种候选变形机制的结果进行了比较。我们的工作:(1) 为一种先前仅靠轶事和定性论证支持的变形机制提供了强有力的定量支持;(2) 提供了一个用于严格分析纤维蛋白纤维力-应变数据和模拟拉伸状态下纤维蛋白纤维的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验