Suppr超能文献

耳蜗耳鼓:听觉信号处理中音位变化的几何起源。

The cochlear ear horn: geometric origin of tonotopic variations in auditory signal processing.

机构信息

Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.

Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.

出版信息

Sci Rep. 2020 Nov 25;10(1):20528. doi: 10.1038/s41598-020-77042-w.

Abstract

While separating sounds into frequency components and subsequently converting them into patterns of neural firing, the mammalian cochlea processes signal components in ways that depend strongly on frequency. Indeed, both the temporal structure of the response to transient stimuli and the sharpness of frequency tuning differ dramatically between the apical and basal (i.e., the low- and high-frequency) regions of the cochlea. Although the mechanisms that give rise to these pronounced differences remain incompletely understood, they are generally attributed to tonotopic variations in the constituent hair cells or cytoarchitecture of the organ of Corti. As counterpoint to this view, we present a general acoustic treatment of the horn-like geometry of the cochlea, accompanied by a simple 3-D model to elucidate the theoretical predictions. We show that the main apical/basal functional differences can be accounted for by the known spatial gradients of cochlear dimensions, without the need to invoke mechanical specializations of the sensory tissue. Furthermore, our analysis demonstrates that through its functional resemblance to an ear horn (aka ear trumpet), the geometry of the cochlear duct manifests tapering symmetry, a felicitous design principle that may have evolved not only to aid the analysis of natural sounds but to enhance the sensitivity of hearing.

摘要

哺乳动物耳蜗在将声音分离成频率分量并将其转换为神经放电模式的过程中,以强烈依赖于频率的方式处理信号分量。事实上,对瞬态刺激的反应的时间结构和频率调谐的锐度在耳蜗的顶部和底部(即低频和高频)区域之间存在显著差异。尽管导致这些明显差异的机制仍不完全清楚,但它们通常归因于组成毛细胞或柯蒂氏器细胞结构的音调变化。作为对这种观点的反驳,我们提出了一种对耳蜗角状几何形状的一般声学处理方法,并附有一个简单的 3D 模型来阐明理论预测。我们表明,主要的顶部/底部功能差异可以用耳蜗尺寸的已知空间梯度来解释,而无需诉诸感觉组织的机械专门化。此外,我们的分析表明,通过其与耳号角(又名耳笛)的功能相似性,耳蜗管的几何形状表现出渐缩对称,这是一种巧妙的设计原则,它的进化不仅可能有助于分析自然声音,而且可能提高听力的灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4a6/7689495/680477e85212/41598_2020_77042_Fig3_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验