Department of Radiology, Columbia University Irving Medical Center/New York Presbyterian Hospital, 622 W 168th St., New York, NY, 10032, USA.
Department of Radiology, University of California San Diego, San Diego, CA, USA.
Pediatr Radiol. 2023 May;53(6):1125-1134. doi: 10.1007/s00247-023-05588-8. Epub 2023 Jan 18.
Missed fractures are the leading cause of diagnostic error in the emergency department, and fractures of pediatric bones, particularly subtle wrist fractures, can be misidentified because of their varying characteristics and responses to injury.
This study evaluated the utility of an object detection deep learning framework for classifying pediatric wrist fractures as positive or negative for fracture, including subtle buckle fractures of the distal radius, and evaluated the performance of this algorithm as augmentation to trainee radiograph interpretation.
We obtained 395 posteroanterior wrist radiographs from unique pediatric patients (65% positive for fracture, 30% positive for distal radial buckle fracture) and divided them into train (n = 229), tune (n = 41) and test (n = 125) sets. We trained a Faster R-CNN (region-based convolutional neural network) deep learning object-detection model. Two pediatric and two radiology residents evaluated radiographs initially without the artificial intelligence (AI) assistance, and then subsequently with access to the bounding box generated by the Faster R-CNN model.
The Faster R-CNN model demonstrated an area under the curve (AUC) of 0.92 (95% confidence interval [CI] 0.87-0.97), accuracy of 88% (n = 110/125; 95% CI 81-93%), sensitivity of 88% (n = 70/80; 95% CI 78-94%) and specificity of 89% (n = 40/45, 95% CI 76-96%) in identifying any fracture and identified 90% of buckle fractures (n = 35/39, 95% CI 76-97%). Access to Faster R-CNN model predictions significantly improved average resident accuracy from 80 to 93% in detecting any fracture (P < 0.001) and from 69 to 92% in detecting buckle fracture (P < 0.001). After accessing AI predictions, residents significantly outperformed AI in cases of disagreement (73% resident correct vs. 27% AI, P = 0.002).
An object-detection-based deep learning approach trained with only a few hundred examples identified radiographs containing pediatric wrist fractures with high accuracy. Access to model predictions significantly improved resident accuracy in diagnosing these fractures.
漏诊是急诊科诊断错误的主要原因,儿童骨骼的骨折,尤其是细微的腕骨骨折,由于其特征和对损伤的反应不同,可能会被误诊。
本研究评估了一种目标检测深度学习框架在分类儿童腕骨骨折为阳性或阴性方面的效用,包括桡骨远端细微的扣带骨折,并评估了该算法作为对学员放射影像解读的增强。
我们从独特的儿科患者中获得了 395 张前后位腕关节 X 线片(65%为阳性骨折,30%为桡骨远端扣带骨折阳性),并将其分为训练集(n=229)、调整集(n=41)和测试集(n=125)。我们训练了一个基于区域的卷积神经网络(Faster R-CNN)深度学习目标检测模型。两名儿科医生和两名放射科医生最初在没有人工智能(AI)辅助的情况下评估 X 光片,然后再使用 Faster R-CNN 模型生成的边界框进行评估。
Faster R-CNN 模型的曲线下面积(AUC)为 0.92(95%置信区间 [CI] 0.87-0.97),准确率为 88%(n=110/125;95%CI 81-93%),敏感度为 88%(n=70/80;95%CI 78-94%),特异性为 89%(n=40/45,95%CI 76-96%),用于识别任何骨折,并识别 90%的扣带骨折(n=35/39,95%CI 76-97%)。使用 Faster R-CNN 模型预测可以显著提高平均医生在检测任何骨折时的准确率,从 80%提高到 93%(P<0.001),在检测扣带骨折时的准确率从 69%提高到 92%(P<0.001)。在使用 AI 预测后,医生在与 AI 意见不一致的情况下的表现明显优于 AI(73%的医生正确与 27%的 AI,P=0.002)。
一种基于目标检测的深度学习方法,仅用几百个例子进行训练,就能以很高的准确性识别出包含儿童腕骨骨折的 X 光片。使用模型预测可以显著提高医生诊断这些骨折的准确率。