Suppr超能文献

基于深度图神经网络的药物-靶点结合亲和力预测方法

Drug-target binding affinity prediction method based on a deep graph neural network.

作者信息

Ma Dong, Li Shuang, Chen Zhihua

机构信息

Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China.

Beidahuang Industry Group General Hospital, Harbin, China.

出版信息

Math Biosci Eng. 2023 Jan;20(1):269-282. doi: 10.3934/mbe.2023012. Epub 2022 Sep 30.

Abstract

The development of new drugs is a long and costly process, Computer-aided drug design reduces development costs while computationally shortening the new drug development cycle, in which DTA (Drug-Target binding Affinity) prediction is a key step to screen out potential drugs. With the development of deep learning, various types of deep learning models have achieved notable performance in a wide range of fields. Most current related studies focus on extracting the sequence features of molecules while ignoring the valuable structural information; they employ sequence data that represent only the elemental composition of molecules without considering the molecular structure maps that contain structural information. In this paper, we use graph neural networks to predict DTA based on corresponding graph data of drugs and proteins, and we achieve competitive performance on two benchmark datasets, Davis and KIBA. In particular, an MSE of 0.227 and CI of 0.895 were obtained on Davis, and an MSE of 0.127 and CI of 0.903 were obtained on KIBA.

摘要

新药研发是一个漫长且成本高昂的过程,计算机辅助药物设计在降低研发成本的同时,从计算上缩短了新药研发周期,其中药物-靶点结合亲和力(DTA)预测是筛选潜在药物的关键步骤。随着深度学习的发展,各类深度学习模型在广泛领域都取得了显著成效。当前大多数相关研究侧重于提取分子的序列特征,却忽略了有价值的结构信息;它们使用的序列数据仅代表分子的元素组成,而未考虑包含结构信息的分子结构图。在本文中,我们基于药物和蛋白质的相应图形数据,使用图神经网络来预测DTA,并在两个基准数据集Davis和KIBA上取得了具有竞争力的性能。特别是,在Davis数据集上获得了0.227的均方误差(MSE)和0.895的置信区间(CI),在KIBA数据集上获得了0.127的MSE和0.903的CI。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验