Suppr超能文献

SSR-DTA:用于药物-靶标结合亲和力预测的基于子结构感知的多层图神经网络。

SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction.

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410086, Hunan, China; Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China.

College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410086, Hunan, China.

出版信息

Artif Intell Med. 2024 Nov;157:102983. doi: 10.1016/j.artmed.2024.102983. Epub 2024 Sep 17.

Abstract

Accurate prediction of drug-target binding affinity (DTA) is essential in the field of drug discovery. Recently, scientists have been attempting to utilize artificial intelligence prediction to screen out a significant number of ineffective compounds, thereby mitigating labor and financial losses. While graph neural networks (GNNs) have been applied to DTA, existing GNNs have limitations in effectively extracting substructural features across various sizes. Functional groups play a crucial role in modulating molecular properties, but existing GNNs struggle with feature extraction from certain motifs due to scale mismatches. Additionally, sequence-based models for target proteins lack the integration of structural information. To address these limitations, we present SSR-DTA, a multi-layer graph network capable of adapting to diverse structural sizes, which can extract richer biological features, thereby improving the robustness and accuracy of predictions. Multi-layer GNNs enable the capture of molecular motifs across different scales, ranging from atomic to macrocyclic motifs. Furthermore, we introduce BiGNN to simultaneously learn sequence and structural information. Sequence information corresponds to the primary structure of proteins, while graph information represents the tertiary structure. BiGNN assimilates richer information compared to sequence-based methods while mitigating the impact of errors from predicted structures, resulting in more accurate predictions. Through rigorous experimental evaluations conducted on four benchmark datasets, we demonstrate the superiority of SSR-DTA over state-of-the-art models. Particularly, in comparison to state-of-the-art models, SSR-DTA demonstrates an impressive 20% reduction in mean squared error on the Davis dataset and a 5% reduction on the KIBA dataset, underscoring its potential as a valuable tool for advancing DTA prediction.

摘要

准确预测药物-靶标结合亲和力(DTA)在药物发现领域至关重要。最近,科学家们一直试图利用人工智能预测来筛选出大量无效化合物,从而减轻劳动力和财务损失。虽然图神经网络(GNN)已被应用于 DTA,但现有的 GNN 在有效地提取各种大小的亚结构特征方面存在局限性。官能团在调节分子性质方面起着至关重要的作用,但现有的 GNN 由于尺度不匹配而难以从某些基序中提取特征。此外,针对靶蛋白的基于序列的模型缺乏结构信息的整合。为了解决这些限制,我们提出了 SSR-DTA,这是一种多层图网络,能够适应不同的结构大小,从而提取更丰富的生物学特征,从而提高预测的稳健性和准确性。多层 GNN 能够捕获不同尺度的分子基序,从原子到大环基序。此外,我们引入了 BiGNN 来同时学习序列和结构信息。序列信息对应于蛋白质的一级结构,而图信息表示三级结构。BiGNN 比基于序列的方法吸收了更丰富的信息,同时减轻了预测结构中错误的影响,从而实现了更准确的预测。通过在四个基准数据集上进行严格的实验评估,我们证明了 SSR-DTA 优于最先进的模型。特别是,与最先进的模型相比,SSR-DTA 在 Davis 数据集上的均方误差降低了 20%,在 KIBA 数据集上降低了 5%,这表明它作为推进 DTA 预测的有价值工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验