Suppr超能文献

GraphkmerDTA:整合局部序列模式和拓扑信息用于药物-靶点结合亲和力预测及其在多靶点抗阿尔茨海默病药物发现中的应用

GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery.

作者信息

Zhang Zuolong, Luo Gang, Ma Yixuan, Wu Zhaoqi, Peng Shuo, Chen Shengbo, Wu Yi

机构信息

School of Software, Henan University, Kaifeng, 475000, Henan, China.

School of Mathematics and Computer Science, Nanchang University, Nanchang, 330031, Jiangxi, China.

出版信息

Mol Divers. 2025 Jan 10. doi: 10.1007/s11030-024-11065-7.

Abstract

Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise. Secondly, structure-based methods prioritize extracting topological information but struggle to effectively capture sequence features. To address these challenges, we propose a novel deep learning model named GraphkmerDTA, which integrates Kmer features with structural topology. Specifically, GraphkmerDTA utilizes graph neural networks to extract topological features from both molecules and proteins, while fully connected networks learn local sequence patterns from the Kmer features of proteins. Experimental results indicate that GraphkmerDTA outperforms existing methods on benchmark datasets. Furthermore, a case study on lung cancer demonstrates the effectiveness of GraphkmerDTA, as it successfully identifies seven known EGFR inhibitors from a screening library of over two thousand compounds. To further assess the practical utility of GraphkmerDTA, we integrated it with network pharmacology to investigate the mechanisms underlying the therapeutic effects of Lonicera japonica flower in treating Alzheimer's disease. Through this interdisciplinary approach, three potential compounds were identified and subsequently validated through molecular docking studies. In conclusion, we present not only a novel AI model for the DTA task but also demonstrate its practical application in drug discovery by integrating modern AI approaches with traditional drug discovery methodologies.

摘要

识别药物-靶点结合亲和力(DTA)在药物研发早期阶段起着关键作用。尽管现有各种方法,但仍存在两个局限性。首先,基于序列的方法通常从固定长度的蛋白质序列中提取特征,需要截断或填充,这可能导致信息丢失或引入不必要的噪声。其次,基于结构的方法优先提取拓扑信息,但难以有效捕捉序列特征。为应对这些挑战,我们提出了一种名为GraphkmerDTA的新型深度学习模型,该模型将Kmer特征与结构拓扑相结合。具体而言,GraphkmerDTA利用图神经网络从分子和蛋白质中提取拓扑特征,而全连接网络则从蛋白质的Kmer特征中学习局部序列模式。实验结果表明,GraphkmerDTA在基准数据集上优于现有方法。此外,一项针对肺癌的案例研究证明了GraphkmerDTA的有效性,因为它成功地从一个包含两千多种化合物的筛选库中识别出了七种已知的表皮生长因子受体(EGFR)抑制剂。为进一步评估GraphkmerDTA的实际效用,我们将其与网络药理学相结合,以研究金银花治疗阿尔茨海默病的治疗效果背后的机制。通过这种跨学科方法,确定了三种潜在化合物,随后通过分子对接研究进行了验证。总之,我们不仅提出了一种用于DTA任务的新型人工智能模型,还通过将现代人工智能方法与传统药物研发方法相结合,展示了其在药物研发中的实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验