Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX 78712, USA.
Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street POB 4.102 Stop C0200, Austin, TX 78712, USA.
Math Biosci Eng. 2023 Jan;20(1):318-336. doi: 10.3934/mbe.2023015. Epub 2022 Oct 8.
We incorporate a practical data assimilation methodology into our previously established experimental-computational framework to predict the heterogeneous response of glioma cells receiving fractionated radiation treatment. Replicates of 9L and C6 glioma cells grown in 96-well plates were irradiated with six different fractionation schemes and imaged via time-resolved microscopy to yield 360- and 286-time courses for the 9L and C6 lines, respectively. These data were used to calibrate a biology-based mathematical model and then make predictions within two different scenarios. For Scenario 1, 70% of the time courses are fit to the model and the resulting parameter values are averaged. These average values, along with the initial cell number, initialize the model to predict the temporal evolution for each test time course (10% of the data). In Scenario 2, the predictions for the test cases are made with model parameters initially assigned from the training data, but then updated with new measurements every 24 hours via four versions of a data assimilation framework. We then compare the predictions made from Scenario 1 and the best version of Scenario 2 to the experimentally measured microscopy measurements using the concordance correlation coefficient (CCC). Across all fractionation schemes, Scenario 1 achieved a CCC value (mean ± standard deviation) of 0.845 ± 0.185 and 0.726 ± 0.195 for the 9L and C6 cell lines, respectively. For the best data assimilation version from Scenario 2 (validated with the last 20% of the data), the CCC values significantly increased to 0.954 ± 0.056 (p = 0.002) and 0.901 ± 0.061 (p = 8.9e-5) for the 9L and C6 cell lines, respectively. Thus, we have developed a data assimilation approach that incorporates an experimental-computational system to accurately predict the in vitro response of glioma cells to fractionated radiation therapy.
我们将一种实用的数据同化方法纳入到之前建立的实验计算框架中,以预测接受分割放射治疗的胶质瘤细胞的异质性反应。在 96 孔板中生长的 9L 和 C6 胶质瘤细胞的复制品接受了六种不同的分割方案照射,并通过时间分辨显微镜进行成像,分别得到 9L 和 C6 系的 360 次和 286 次时程。这些数据用于校准基于生物学的数学模型,然后在两种不同情况下进行预测。在情景 1 中,将 70%的时程拟合到模型中,并对得到的参数值进行平均。这些平均值以及初始细胞数用于初始化模型,以预测每个测试时程(数据的 10%)的时间演变。在情景 2 中,使用训练数据初始分配的模型参数对测试案例进行预测,但随后通过四个版本的数据同化框架每 24 小时用新的测量值进行更新。然后,我们使用一致性相关系数(CCC)将情景 1 中的预测结果与情景 2 中的最佳版本以及实验测量的显微镜测量结果进行比较。在所有分割方案中,情景 1 的 CCC 值(平均值±标准差)分别为 0.845±0.185 和 0.726±0.195,用于 9L 和 C6 细胞系。对于情景 2 中最佳的数据同化版本(使用最后 20%的数据进行验证),CCC 值显著增加到 0.954±0.056(p=0.002)和 0.901±0.061(p=8.9e-5),用于 9L 和 C6 细胞系。因此,我们开发了一种数据同化方法,该方法将实验计算系统纳入其中,以准确预测胶质瘤细胞对分割放射治疗的体外反应。