Suppr超能文献

通过自然语言处理实现的用于高能量密度钠硫电池的优质单原子催化剂。

Preferable single-atom catalysts enabled by natural language processing for high energy density Na-S batteries.

作者信息

Bai Ruilin, Yao Yu, Lin Qiaosong, Wu Lize, Li Zhen, Wang Huijuan, Ma Mingze, Mu Di, Hu Lingxiang, Yang Hai, Li Weihan, Zhu Shaolong, Wu Xiaojun, Rui Xianhong, Yu Yan

机构信息

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Nat Commun. 2025 Jul 1;16(1):5827. doi: 10.1038/s41467-025-60931-x.

Abstract

Employing appropriate single-atom (SA) catalysts in room-temperature sodium-sulfur (Na-S) batteries is propitious to promote the performance, whereas a universal designing strategy for the highly-efficient single-atom catalysts is absent. In this work, we adopt natural language processing techniques to screen the potential single-atom catalysts, then a binary descriptor is constructed to optimize the catalyst candidates. Atomically dispersed cobalt anchored to both nitrogen and sulfur atoms (SA Co-N/S) is selected as an ideal catalyst to significantly facilitate sulfur reduction reaction. The sulfur cathode catalyzed with SA Co-N/S almost realizes complete transformation, and the corresponding pouch cell exhibits satisfactory performance with high mass loading. In-situ X-ray absorption spectroscopy reveals the dynamical interactions between SA Co-N/S and sulfur species in the sulfur reduction reaction. Our work provides a method to select the preferable SA catalyst and to understand the interfacial catalysis dynamics in the sustainable Na-S systems.

摘要

在室温钠硫(Na-S)电池中使用合适的单原子(SA)催化剂有利于提升电池性能,然而目前缺乏针对高效单原子催化剂的通用设计策略。在这项工作中,我们采用自然语言处理技术筛选潜在的单原子催化剂,然后构建二元描述符以优化候选催化剂。锚定在氮和硫原子上的原子分散钴(SA Co-N/S)被选为理想催化剂,可显著促进硫还原反应。用SA Co-N/S催化的硫正极几乎实现了完全转化,相应的软包电池在高质量负载下表现出令人满意的性能。原位X射线吸收光谱揭示了SA Co-N/S与硫还原反应中硫物种之间的动态相互作用。我们的工作提供了一种选择优选SA催化剂并理解可持续Na-S系统中界面催化动力学的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e212/12217863/a7efcf114a49/41467_2025_60931_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验