Suppr超能文献

成像引导的体内深部组织声印技术。

Imaging-guided deep tissue in vivo sound printing.

作者信息

Davoodi Elham, Li Jiahong, Ma Xiaotian, Najafabadi Alireza Hasani, Yoo Jounghyun, Lu Gengxi, Sani Ehsan Shirzaei, Lee Sunho, Montazerian Hossein, Kim Gwangmook, Williams Jason, Yang Jee Won, Zeng Yushun, Li Lei S, Jin Zhiyang, Sadri Behnam, Nia Shervin S, Wang Lihong V, Hsiai Tzung K, Weiss Paul S, Zhou Qifa, Khademhosseini Ali, Wu Di, Shapiro Mikhail G, Gao Wei

机构信息

Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.

Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA.

出版信息

Science. 2025 May 8;388(6747):616-623. doi: 10.1126/science.adt0293.

Abstract

Three-dimensional printing offers promise for patient-specific implants and therapies but is often limited by the need for invasive surgical procedures. To address this, we developed an imaging-guided deep tissue in vivo sound printing (DISP) platform. By incorporating cross-linking agent-loaded low-temperature-sensitive liposomes into bioinks, DISP enables precise, rapid, on-demand cross-linking of diverse functional biomaterials using focused ultrasound. Gas vesicle-based ultrasound imaging provides real-time monitoring and allows for customized pattern creation in live animals. We validated DISP by successfully printing near diseased areas in the mouse bladder and deep within rabbit leg muscles in vivo, demonstrating its potential for localized drug delivery and tissue replacement. DISP's ability to print conductive, drug-loaded, cell-laden, and bioadhesive biomaterials demonstrates its versatility for diverse biomedical applications.

摘要

三维打印为定制化植入物和治疗方法带来了希望,但往往因需要侵入性外科手术而受到限制。为了解决这个问题,我们开发了一种成像引导的体内深部组织声学打印(DISP)平台。通过将负载交联剂的低温敏感脂质体融入生物墨水,DISP能够使用聚焦超声对多种功能性生物材料进行精确、快速、按需交联。基于气体囊泡的超声成像提供实时监测,并允许在活体动物中创建定制图案。我们通过在小鼠膀胱病变区域附近和兔腿部肌肉深部成功进行体内打印,验证了DISP,证明了其在局部药物递送和组织替代方面的潜力。DISP打印导电、载药、载细胞和生物粘附性生物材料的能力证明了其在多种生物医学应用中的多功能性。

相似文献

1
Imaging-guided deep tissue in vivo sound printing.
Science. 2025 May 8;388(6747):616-623. doi: 10.1126/science.adt0293.
2
Sericin from Bombyx Mori as a By-product for DLP 3D Printing in Pharmaceutical and Biomedical Applications.
AAPS PharmSciTech. 2025 Apr 17;26(5):111. doi: 10.1208/s12249-025-03108-5.
3
Compartmentalized 3D bioprinting of the limbal niche with distinct hPSC-LSC subpopulations for corneal disease modeling.
Acta Biomater. 2025 Jul 1;201:187-197. doi: 10.1016/j.actbio.2025.05.068. Epub 2025 May 29.
4
Clickable PEG-norbornene microgels support suspension bioprinting and microvascular assembly.
Acta Biomater. 2025 Jul 1;201:283-296. doi: 10.1016/j.actbio.2025.06.006. Epub 2025 Jun 13.
5
"Green" Cross-Linking of Poly(Vinyl Alcohol)-Based Nanostructured Biomaterials: From Eco-Friendly Approaches to Practical Applications.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 May-Jun;17(3):e70017. doi: 10.1002/wnan.70017.
6
7
Three-Dimensional Printing in Plastic and Reconstructive Surgery: A Systematic Review.
Ann Plast Surg. 2016 Nov;77(5):569-576. doi: 10.1097/SAP.0000000000000671.
8
Photoacoustic processing of decellularized extracellular matrix for biofabricating living constructs.
Acta Biomater. 2024 Jul 15;183:74-88. doi: 10.1016/j.actbio.2024.05.054. Epub 2024 Jun 3.
9
Iohexol as a refractive index tuning agent for bioinks in high cell density bioprinting.
Biomater Sci. 2025 Jul 8;13(14):3958-3971. doi: 10.1039/d5bm00585j.
10
Multimaterial and Multidimensional Bioprinting in Regenerative Medicine: Advances, Limitations, and Future Directions.
Adv Healthc Mater. 2025 Jul;14(18):e2500475. doi: 10.1002/adhm.202500475. Epub 2025 Jun 4.

引用本文的文献

1
Robotic micromanipulation for patterned and complex organoid biofabrication.
Sci Adv. 2025 Sep 5;11(36):eadz0808. doi: 10.1126/sciadv.adz0808.
4
Acoustic Bioprinting: A Glimpse Into an Emerging Field.
Small Methods. 2025 Jul 26:e2500733. doi: 10.1002/smtd.202500733.

本文引用的文献

1
Regenerative cell therapy with 3D bioprinting.
Science. 2024 Aug 9;385(6709):604-606. doi: 10.1126/science.add8593. Epub 2024 Aug 8.
2
Holographic direct sound printing.
Nat Commun. 2024 Aug 6;15(1):6691. doi: 10.1038/s41467-024-50923-8.
4
Ultrasound Mediated Polymerization for Cell Delivery, Drug Delivery, and 3D Printing.
Small Methods. 2024 Jul;8(7):e2301197. doi: 10.1002/smtd.202301197. Epub 2024 Feb 20.
5
A 3D printable tissue adhesive.
Nat Commun. 2024 Feb 9;15(1):1215. doi: 10.1038/s41467-024-45147-9.
6
Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing.
Science. 2023 Dec 8;382(6675):1148-1155. doi: 10.1126/science.adi1563. Epub 2023 Dec 7.
7
3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance.
Sci Adv. 2023 Sep 15;9(37):eadi6492. doi: 10.1126/sciadv.adi6492. Epub 2023 Sep 13.
8
3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces.
Nat Mater. 2023 Jul;22(7):895-902. doi: 10.1038/s41563-023-01569-2. Epub 2023 Jun 15.
9
A Review on Biological Effects of Ultrasounds: Key Messages for Clinicians.
Diagnostics (Basel). 2023 Feb 23;13(5):855. doi: 10.3390/diagnostics13050855.
10
Biomolecular actuators for genetically selective acoustic manipulation of cells.
Sci Adv. 2023 Feb 22;9(8):eadd9186. doi: 10.1126/sciadv.add9186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验