Yang Bowen, Dong Xuanchen, Lv Wenhao, Liu Wenzhuo, Lu Mengying, Liu Zhe, Lu Tonghui, Li Xianglin, Lv Song
School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063 China.
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430063 China.
iScience. 2025 Jan 4;28(2):111743. doi: 10.1016/j.isci.2025.111743. eCollection 2025 Feb 21.
Soft actuators are valued for their adaptability and diverse applications but often face challenges like slow response, high activation energy, and high energy consumption. To address these issues, we developed a graphene-assembled film (GAF) via the redox method, characterized by high thermal conductivity, conductivity, and stiffness. Using GAF as a photothermal and electrothermal driver, we engineered a sandwich-structured metamaterial (SSM) by combining two polymers with vastly different thermal expansion coefficients. The SSM achieved rapid response (<5 s), low actuation energy (≤0.22 W cm⁻ or ≤3.55 V), and large bending curvature (>0.18 mm⁻), surpassing conventional designs in response speed (226.2% faster) and curvature (249.1% higher). This metamaterial enables soft fixtures with superior gripping capabilities and low energy consumption, handling up to eight times the object mass of traditional designs. This work highlights advances in multi-stimulus metamaterials, offering significant implications for the development of high-performance soft actuators.
软驱动器因其适应性和多样的应用而受到重视,但常常面临诸如响应缓慢、激活能量高和能耗高等挑战。为了解决这些问题,我们通过氧化还原法开发了一种石墨烯组装薄膜(GAF),其特点是具有高导热性、导电性和刚度。使用GAF作为光热和电热驱动器,我们通过将两种具有截然不同热膨胀系数的聚合物结合在一起,设计了一种三明治结构的超材料(SSM)。该SSM实现了快速响应(<5秒)、低驱动能量(≤0.22 W cm⁻或≤3.55 V)和大弯曲曲率(>0.18 mm⁻),在响应速度(快226.2%)和曲率(高249.1%)方面超过了传统设计。这种超材料能够实现具有卓越夹持能力和低能耗的软夹具,可处理高达传统设计八倍的物体质量。这项工作突出了多刺激超材料的进展,对高性能软驱动器的发展具有重要意义。