Kim Ki Seok, Lee Doyoon, Chang Celesta S, Seo Seunghwan, Hu Yaoqiao, Cha Soonyoung, Kim Hyunseok, Shin Jiho, Lee Ju-Hee, Lee Sangho, Kim Justin S, Kim Ki Hyun, Suh Jun Min, Meng Yuan, Park Bo-In, Lee Jung-Hoon, Park Hyung-Sang, Kum Hyun S, Jo Moon-Ho, Yeom Geun Young, Cho Kyeongjae, Park Jin-Hong, Bae Sang-Hoon, Kim Jeehwan
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nature. 2023 Feb;614(7946):88-94. doi: 10.1038/s41586-022-05524-0. Epub 2023 Jan 18.
Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics. Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO trenches, we obtain wafer-scale single-domain monolayer WSe arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS/WSe heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.
二维(2D)材料及其异质结构为下一代电子学展示了一条充满前景的道路。然而,基于二维的电子产品尚未实现商业化,主要归因于三个关键挑战:i)对二维材料逐层生长进行精确的动力学控制;ii)在生长过程中保持单畴;iii)层数和结晶度的晶圆级可控性。在此,我们介绍一种确定性的受限生长技术,该技术可以同时解决这三个问题,从而在任意衬底上获得晶圆级单畴二维单层阵列及其异质结构。我们通过在两英寸衬底上对SiO掩膜进行图案化来定义一个选择性生长区域,从而在几何上限制第一组核的生长。由于微米级SiO沟槽处生长持续时间的大幅缩短,在引入第二组核之前,通过第一组核的短时间生长填充沟槽,我们在任意衬底上获得了晶圆级单畴单层WSe阵列,因此无需外延晶种。按照相同原理进一步生长过渡金属二硫属化物可形成单畴MoS/WSe异质结构。我们的成果将为二维材料融入工业环境奠定坚实基础。