Suppr超能文献

双曲矩阵分解提高药物-靶标关联预测。

Hyperbolic matrix factorization improves prediction of drug-target associations.

机构信息

Department of Computer Science, University of Northern Iowa, Cedar Falls, IA, 50614, USA.

出版信息

Sci Rep. 2023 Jan 18;13(1):959. doi: 10.1038/s41598-023-27995-5.

Abstract

Past research in computational systems biology has focused more on the development and applications of advanced statistical and numerical optimization techniques and much less on understanding the geometry of the biological space. By representing biological entities as points in a low dimensional Euclidean space, state-of-the-art methods for drug-target interaction (DTI) prediction implicitly assume the flat geometry of the biological space. In contrast, recent theoretical studies suggest that biological systems exhibit tree-like topology with a high degree of clustering. As a consequence, embedding a biological system in a flat space leads to distortion of distances between biological objects. Here, we present a novel matrix factorization methodology for drug-target interaction prediction that uses hyperbolic space as the latent biological space. When benchmarked against classical, Euclidean methods, hyperbolic matrix factorization exhibits superior accuracy while lowering embedding dimension by an order of magnitude. We see this as additional evidence that the hyperbolic geometry underpins large biological networks.

摘要

过去的计算系统生物学研究更多地集中在开发和应用先进的统计和数值优化技术上,而对理解生物空间的几何结构关注较少。通过将生物实体表示为低维欧几里得空间中的点,药物 - 靶点相互作用(DTI)预测的最新方法隐含地假设生物空间的平坦几何形状。相比之下,最近的理论研究表明,生物系统具有高度聚类的树状拓扑结构。因此,将生物系统嵌入平坦空间会导致生物对象之间的距离失真。在这里,我们提出了一种新的药物 - 靶点相互作用预测矩阵分解方法,该方法将双曲空间用作潜在的生物空间。与经典的欧几里得方法相比,双曲矩阵分解在降低一个数量级的嵌入维度的同时表现出更高的准确性。我们认为这是双曲几何支撑大型生物网络的又一证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e4/9849222/50df2b2219b9/41598_2023_27995_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验