Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary.
PLoS One. 2024 Mar 21;19(3):e0300906. doi: 10.1371/journal.pone.0300906. eCollection 2024.
Given the prolonged timelines and high costs associated with traditional approaches, accelerating drug development is crucial. Computational methods, particularly drug-target interaction prediction, have emerged as efficient tools, yet the explainability of machine learning models remains a challenge. Our work aims to provide more interpretable interaction prediction models using similarity-based prediction in a latent space aligned to biological hierarchies. We investigated integrating drug and protein hierarchies into a joint-embedding drug-target latent space via embedding regularization by conducting a comparative analysis between models employing traditional flat Euclidean vector spaces and those utilizing hyperbolic embeddings. Besides, we provided a latent space analysis as an example to show how we can gain visual insights into the trained model with the help of dimensionality reduction. Our results demonstrate that hierarchy regularization improves interpretability without compromising predictive performance. Furthermore, integrating hyperbolic embeddings, coupled with regularization, enhances the quality of the embedded hierarchy trees. Our approach enables a more informed and insightful application of interaction prediction models in drug discovery by constructing an interpretable hyperbolic latent space, simultaneously incorporating drug and target hierarchies and pairing them with available interaction information. Moreover, compatible with pairwise methods, the approach allows for additional transparency through existing explainable AI solutions.
鉴于传统方法所涉及的漫长时间和高昂成本,加速药物开发至关重要。计算方法,特别是药物-靶标相互作用预测,已经成为高效的工具,但机器学习模型的可解释性仍然是一个挑战。我们的工作旨在使用基于相似性的预测在与生物学层次结构对齐的潜在空间中提供更具可解释性的相互作用预测模型。我们通过嵌入正则化将药物和蛋白质层次结构集成到联合嵌入药物-靶标潜在空间中,通过在使用传统平面欧几里得向量空间的模型和使用双曲嵌入的模型之间进行比较分析。此外,我们提供了一个潜在空间分析作为示例,展示了如何借助降维技术获得对训练模型的直观见解。我们的结果表明,层次结构正则化在不影响预测性能的情况下提高了可解释性。此外,结合双曲嵌入和正则化,可提高嵌入式层次树的质量。我们的方法通过构建可解释的双曲潜在空间,同时整合药物和靶标层次结构,并将其与可用的相互作用信息相结合,为药物发现中的相互作用预测模型提供了更明智和深入的应用。此外,该方法与成对方法兼容,可通过现有的可解释 AI 解决方案提供额外的透明度。