Suppr超能文献

基于多百万像素图像的端到端学习的流式卷积神经网络。

Streaming Convolutional Neural Networks for End-to-End Learning With Multi-Megapixel Images.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Mar;44(3):1581-1590. doi: 10.1109/TPAMI.2020.3019563. Epub 2022 Feb 3.

Abstract

Due to memory constraints on current hardware, most convolution neural networks (CNN) are trained on sub-megapixel images. For example, most popular datasets in computer vision contain images much less than a megapixel in size (0.09MP for ImageNet and 0.001MP for CIFAR-10). In some domains such as medical imaging, multi-megapixel images are needed to identify the presence of disease accurately. We propose a novel method to directly train convolutional neural networks using any input image size end-to-end. This method exploits the locality of most operations in modern convolutional neural networks by performing the forward and backward pass on smaller tiles of the image. In this work, we show a proof of concept using images of up to 66-megapixels (8192×8192), saving approximately 50GB of memory per image. Using two public challenge datasets, we demonstrate that CNNs can learn to extract relevant information from these large images and benefit from increasing resolution. We improved the area under the receiver-operating characteristic curve from 0.580 (4MP) to 0.706 (66MP) for metastasis detection in breast cancer (CAMELYON17). We also obtained a Spearman correlation metric approaching state-of-the-art performance on the TUPAC16 dataset, from 0.485 (1MP) to 0.570 (16MP). Code to reproduce a subset of the experiments is available at https://github.com/DIAGNijmegen/StreamingCNN.

摘要

由于当前硬件的内存限制,大多数卷积神经网络 (CNN) 都是在亚百万像素图像上进行训练的。例如,计算机视觉中大多数流行的数据集包含的图像尺寸都小于百万像素(ImageNet 为 0.09MP,CIFAR-10 为 0.001MP)。在某些领域,如医学成像,需要使用数百万像素的图像来准确识别疾病的存在。我们提出了一种新颖的方法,可以直接使用任何输入图像尺寸端到端训练卷积神经网络。该方法通过在图像的较小块上执行前向和后向传递,利用现代卷积神经网络中大多数操作的局部性。在这项工作中,我们使用高达 6600 万像素(8192×8192)的图像证明了这一概念,每个图像节省了大约 50GB 的内存。使用两个公共的挑战数据集,我们证明了 CNN 可以从这些大图像中学习提取相关信息,并受益于分辨率的提高。我们将乳腺癌转移检测的接收者操作特征曲线下面积从 0.580(4MP)提高到 0.706(66MP)(CAMELYON17)。我们还在 TUPAC16 数据集上获得了接近最先进性能的斯皮尔曼相关度量,从 0.485(1MP)提高到 0.570(16MP)。可在 https://github.com/DIAGNijmegen/StreamingCNN 上重现部分实验的代码。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验