Suppr超能文献

拉普捷夫海湾小绒鸭(Anser caerulescens caerulescens)生境破坏程度的无人机图像与地面方法比较。

A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay.

机构信息

University of North Dakota, Department of Biology, Grand Forks, North Dakota, United States of America.

University of North Dakota, Department of Geography & Geographic Information Science, Grand Forks, North Dakota, United States of America.

出版信息

PLoS One. 2019 Aug 9;14(8):e0217049. doi: 10.1371/journal.pone.0217049. eCollection 2019.

Abstract

Lesser snow goose (Anser caerulescens caerulescens) populations have dramatically altered vegetation communities through increased foraging pressure. In remote regions, regular habitat assessments are logistically challenging and time consuming. Drones are increasingly being used by ecologists to conduct habitat assessments, but reliance on georeferenced data as ground truth may not always be feasible. We estimated goose habitat degradation using photointerpretation of drone imagery and compared estimates to those made with ground-based linear transects. In July 2016, we surveyed five study plots in La Pérouse Bay, Manitoba, to evaluate the effectiveness of a fixed-wing drone with simple Red Green Blue (RGB) imagery for evaluating habitat degradation by snow geese. Ground-based land cover data was collected and grouped into barren, shrub, or non-shrub categories. We compared estimates between ground-based transects and those made from unsupervised classification of drone imagery collected at altitudes of 75, 100, and 120 m above ground level (ground sampling distances of 2.4, 3.2, and 3.8 cm respectively). We found large time savings during the data collection step of drone surveys, but these savings were ultimately lost during imagery processing. Based on photointerpretation, overall accuracy of drone imagery was generally high (88.8% to 92.0%) and Kappa coefficients were similar to previously published habitat assessments from drone imagery. Mixed model estimates indicated 75m drone imagery overestimated barren (F2,182 = 100.03, P < 0.0001) and shrub classes (F2,182 = 160.16, P < 0.0001) compared to ground estimates. Inconspicuous graminoid and forb species (non-shrubs) were difficult to detect from drone imagery and were underestimated compared to ground-based transects (F2,182 = 843.77, P < 0.0001). Our findings corroborate previous findings, and that simple RGB imagery is useful for evaluating broad scale goose damage, and may play an important role in measuring habitat destruction by geese and other agents of environmental change.

摘要

小绒鸭(Anser caerulescens caerulescens)种群通过增加觅食压力,极大地改变了植被群落。在偏远地区,定期进行栖息地评估在后勤上具有挑战性且耗时。生态学家越来越多地使用无人机进行栖息地评估,但依赖地理参考数据作为地面实况并不总是可行的。我们使用无人机图像的照片解释来估计鹅的栖息地退化情况,并将估计值与基于地面的线性样带的估计值进行了比较。2016 年 7 月,我们在马尼托巴省拉普卢斯湾调查了五个研究区域,以评估具有简单红绿蓝(RGB)图像的固定翼无人机评估雪鹅对栖息地破坏的有效性。收集了基于地面的土地覆盖数据,并将其分为荒地、灌木或非灌木类别。我们比较了基于地面样带和从距地面 75、100 和 120 米(地面采样距离分别为 2.4、3.2 和 3.8 厘米)的无人机图像进行无监督分类得出的估计值之间的估计值。我们发现,在无人机调查的数据收集步骤中节省了大量时间,但这些节省最终在图像处理过程中损失了。基于照片解释,无人机图像的整体准确性通常较高(88.8%至 92.0%),kappa 系数与之前基于无人机图像的栖息地评估相似。混合模型估计表明,与地面估计相比,75m 无人机图像高估了荒地(F2,182 = 100.03,P < 0.0001)和灌木类(F2,182 = 160.16,P < 0.0001)。从无人机图像中难以检测到不显眼的禾本科和草本植物(非灌木),并且与基于地面的样带相比被低估(F2,182 = 843.77,P < 0.0001)。我们的发现证实了之前的发现,即简单的 RGB 图像可用于评估大范围的鹅损害,并且可能在测量鹅和其他环境变化因素对栖息地破坏方面发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1724/6688855/dfb0865ea21f/pone.0217049.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验