Choi Joonhee, Shaw Adam L, Madjarov Ivaylo S, Xie Xin, Finkelstein Ran, Covey Jacob P, Cotler Jordan S, Mark Daniel K, Huang Hsin-Yuan, Kale Anant, Pichler Hannes, Brandão Fernando G S L, Choi Soonwon, Endres Manuel
California Institute of Technology, Pasadena, CA, USA.
Department of Physics, The University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Nature. 2023 Jan;613(7944):468-473. doi: 10.1038/s41586-022-05442-1. Epub 2023 Jan 18.
Producing quantum states at random has become increasingly important in modern quantum science, with applications being both theoretical and practical. In particular, ensembles of such randomly distributed, but pure, quantum states underlie our understanding of complexity in quantum circuits and black holes, and have been used for benchmarking quantum devices in tests of quantum advantage. However, creating random ensembles has necessitated a high degree of spatio-temporal control placing such studies out of reach for a wide class of quantum systems. Here we solve this problem by predicting and experimentally observing the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics, which we use to implement an efficient, widely applicable benchmarking protocol. The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system, offering new insights into quantum thermalization. Predicated on this discovery, we develop a fidelity estimation scheme, which we demonstrate for a Rydberg quantum simulator with up to 25 atoms using fewer than 10 experimental samples. This method has broad applicability, as we demonstrate for Hamiltonian parameter estimation, target-state generation benchmarking, and comparison of analogue and digital quantum devices. Our work has implications for understanding randomness in quantum dynamics and enables applications of this concept in a much wider context.
在现代量子科学中,随机产生量子态变得越来越重要,其应用涵盖理论和实际两个方面。特别地,这种随机分布但纯的量子态系综是我们理解量子电路和黑洞复杂性的基础,并且已被用于在量子优势测试中对量子设备进行基准测试。然而,创建随机系综需要高度的时空控制,这使得这类研究对于广泛的量子系统来说遥不可及。在这里,我们通过预测并实验观察在与时间无关的哈密顿动力学下自然出现的随机态系综来解决这个问题,我们用它来实现一个高效、广泛适用的基准测试协议。观察到的随机系综源自投影测量,并且与一个更大的量子系统的子系统之间建立的普遍关联密切相关,这为量子热化提供了新的见解。基于这一发现,我们开发了一种保真度估计方案,我们在一个具有多达25个原子的里德堡量子模拟器上使用少于10个实验样本对其进行了演示。这种方法具有广泛的适用性,正如我们在哈密顿量参数估计、目标态生成基准测试以及模拟和数字量子设备的比较中所展示的那样。我们的工作对于理解量子动力学中的随机性具有重要意义,并使这一概念能够在更广泛的背景下得到应用。