Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
Institut für Pflanzenphysiologie, Justus-Liebig Universität Giessen, Senckenbergstr. 3, 35390, Giessen, Germany.
Photochem Photobiol Sci. 2023 Apr;22(4):919-930. doi: 10.1007/s43630-023-00362-z. Epub 2023 Jan 18.
Photoisomerization is a fundamental process in several classes of photoreceptors. Phytochromes sense red and far-red light in their Pr and Pfr states, respectively. Upon light absorption, these states react via individual photoreactions to the other state. Cph1 phytochrome shows a photoisomerization of its phycocyanobilin (PCB) chromophore in the Pfr state with a time constant of 0.7 ps. The dynamics of the PCB chromophore has been described, but whether or not the apoprotein exhibits an ultrafast response too, is not known. Here, we compare the photoreaction of C/N labeled apoprotein with unlabeled apoprotein to unravel ultrafast apoprotein dynamics in Cph1. In the spectral range from 1750 to 1620 cm we assigned several signals due to ultrafast apoprotein dynamics. A bleaching signal at 1724 cm is tentatively assigned to deprotonation of a carboxylic acid, probably Asp207, and signals around 1670 cm are assigned to amide I vibrations of the capping helix close to the chromophore. These signals remain after photoisomerization. The apoprotein dynamics appear upon photoexcitation or concomitant with chromophore isomerization. Thus, apoprotein dynamics occur prior to and after photoisomerization on an ultrafast time-scale. We discuss the origin of the ultrafast apoprotein response with the 'Coulomb hammer' mechanism, i.e. an impulsive change of electric field and Coulombic force around the chromophore upon excitation.
光异构化是几类光感受器中的基本过程。光敏色素分别在其 Pr 和 Pfr 态中感应红光和远红光。吸收光后,这些状态通过各自的光反应转化为另一种状态。Cph1 光敏色素在 Pfr 态中其藻胆素(PCB)发色团发生光异构化,时间常数为 0.7 ps。PCB 发色团的动力学已被描述,但不知道其脱辅基蛋白是否也表现出超快响应。在这里,我们比较了 C/N 标记的脱辅基蛋白与未标记的脱辅基蛋白的光反应,以揭示 Cph1 中超快脱辅基蛋白动力学。在 1750 至 1620 cm 的光谱范围内,我们分配了几个由于超快脱辅基蛋白动力学引起的信号。1724 cm 处的漂白信号被推测为羧酸的去质子化,可能是 Asp207,而 1670 cm 左右的信号被分配给靠近发色团的盖帽螺旋酰胺 I 振动。这些信号在光异构化后仍然存在。脱辅基蛋白动力学在光激发或伴随发色团异构化时出现。因此,脱辅基蛋白动力学在光异构化之前和之后以超快时间尺度发生。我们讨论了超快脱辅基蛋白响应的起源,即激发时发色团周围电场和库仑力的脉冲变化,即“库仑锤”机制。