Suppr超能文献

用飞秒 X 射线激光捕获的光致变色蛋白的主要结构光响应。

The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser.

机构信息

Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.

Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.

出版信息

Elife. 2020 Mar 31;9:e53514. doi: 10.7554/eLife.53514.

Abstract

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.

摘要

光敏色素蛋白控制着植物、真菌和细菌的生长、繁殖和光合作用。光由双吡咯辅因子检测,但目前仍不清楚这如何通过结构变化导致蛋白激活。我们呈现了细菌光敏色素的发色团结合域在光激发后 1 ps 和 10 ps 的连续飞秒 X 射线晶体学数据。数据显示 D 环的扭曲,导致发色团部分从蛋白上脱离。出乎意料的是,保守的所谓吡咯水从发色团上光解,伴随着 A 环和关键信号天冬氨酸的移动。这些变化通过发色团周围超快的骨架和水的运动紧密相连,将它们引导到信号转导到输出域。我们认为观察到的集体变化对视黄醛光反应很重要,解释了植物、真菌和细菌如何感知红光的最早步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3770/7164956/b7dcbe0cbf80/elife-53514-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验