School of Information and Electrical Engineering, Hebei University of Engineering, Handan, Hebei, China.
PLoS One. 2024 Sep 30;19(9):e0311194. doi: 10.1371/journal.pone.0311194. eCollection 2024.
This study focuses on improving short-term power load forecasting, a critical aspect of power system planning, control, and operation, especially within the context of China's "dual-carbon" policy. The integration of renewable energy under this policy has introduced complexities such as nonlinearity and instability. To enhance forecasting accuracy, the VMD-SE-BiSATCN prediction model is proposed. This model improves computational efficiency and reduces prediction errors by analyzing and reconstructing sequence component complexity using sample entropy (SE) following variational mode decomposition (VMD). Additionally, a self-attention mechanism is integrated into the temporal convolutional network (TCN) to overcome the traditional TCN's limitations in capturing long-term dependencies. The model was evaluated using data from the China Ninth Electrical Attribute Modeling Competition and validated with real-world data from a specific county in Shijiazhuang City, Hebei Province, China. Results indicate that the VMD-SE-BiSATCN model outperforms other models, achieving a mean absolute error (MAE) of 92.87, a root mean square error (RMSE) of 126.906, and a mean absolute percentage error (MAPE) of 0.81%.
本研究聚焦于改进短期电力负荷预测,这是电力系统规划、控制和运行的关键环节,特别是在中国“双碳”政策背景下。该政策下可再生能源的整合引入了非线性和不稳定性等复杂性。为了提高预测准确性,提出了 VMD-SE-BiSATCN 预测模型。该模型通过对变分模态分解(VMD)后的序列分量复杂性进行分析和重构,利用样本熵(SE)提高了计算效率并降低了预测误差。此外,将自注意力机制集成到时间卷积网络(TCN)中,以克服传统 TCN 在捕捉长期依赖关系方面的局限性。该模型使用中国第九电气属性建模竞赛的数据进行评估,并使用来自中国河北省石家庄市某特定县的实际数据进行验证。结果表明,VMD-SE-BiSATCN 模型优于其他模型,其平均绝对误差(MAE)为 92.87,均方根误差(RMSE)为 126.906,平均绝对百分比误差(MAPE)为 0.81%。