Suppr超能文献

美国自我报告的口罩佩戴行为的时空趋势:一项大型横断面调查分析

Spatiotemporal trends in self-reported mask-wearing behavior in the United States: Analysis of a large cross-sectional survey.

作者信息

Taube Juliana C, Susswein Zachary, Bansal Shweta

机构信息

Department of Biology, Georgetown University, Washington, DC, U.S.A.

出版信息

medRxiv. 2023 Jan 4:2022.07.19.22277821. doi: 10.1101/2022.07.19.22277821.

Abstract

BACKGROUND

Face mask-wearing has been identified as an effective strategy to prevent transmission of SARS-CoV-2, yet mask mandates were never imposed nationally in the United States. This decision resulted in a patchwork of local policies and varying compliance potentially generating heterogeneities in the local trajectories of COVID-19 in the U.S. While numerous studies have investigated patterns and predictors of masking behavior nationally, most suffer from survey biases and none have been able to characterize mask-wearing at fine spatial scales across the U.S. through different phases of the pandemic.

OBJECTIVE

Urgently needed is a debiased spatiotemporal characterization of mask-wearing behavior in the U.S. This information is critical to further assess the effectiveness of masking, evaluate drivers of transmission at different time points during the pandemic, and guide future public health decisions through, for example, forecasting disease surges.

METHODS

We analyze spatiotemporal masking patterns in over eight million behavioral survey responses from across the United States starting in September 2020 through May 2021. We adjust for sample size and representation using binomial regression models and survey raking, respectively, to produce county-level monthly estimates of masking behavior. We additionally debias self-reported masking estimates using bias measures derived by comparing vaccination data from the same survey to official records at the county-level. Lastly, we evaluate whether individuals' perceptions of their social environment can serve as a less biased form of behavioral surveillance than self-reported data.

RESULTS

We find that county-level masking behavior is spatially heterogeneous along an urban-rural gradient, with mask-wearing peaking in winter 2021 and declining sharply through May 2021. Our results identify regions where targeted public health efforts could have been most effective and suggest that individuals' frequency of mask-wearing may be influenced by national guidance and disease prevalence. We validate our bias-correction approach by comparing debiased self-reported mask-wearing estimates with community-reported estimates, after addressing issues of small sample size and representation. Self-reported behavior estimates are especially prone to social desirability and non-response biases and our findings demonstrate that these biases can be reduced if individuals are asked to report on community rather than self behaviors.

CONCLUSIONS

Our work highlights the importance of characterizing public health behaviors at fine spatiotemporal scales to capture heterogeneities that may drive outbreak trajectories. Our findings also emphasize the need for a standardized approach to incorporating behavioral big data into public health response efforts. Even large surveys are prone to bias; thus, we advocate for a social sensing approach to behavioral surveillance to enable more accurate estimates of health behaviors. Finally, we invite the public health and behavioral research communities to use our publicly available estimates to consider how bias-corrected behavioral estimates may improve our understanding of protective behaviors during crises and their impact on disease dynamics.

摘要

背景

佩戴口罩已被确定为预防新冠病毒传播的有效策略,但美国从未在全国范围内强制要求佩戴口罩。这一决定导致各地政策参差不齐,民众遵守情况各异,可能在美国新冠疫情的局部发展轨迹中产生异质性。虽然众多研究调查了全国范围内佩戴口罩行为的模式和预测因素,但大多数研究都存在调查偏差,而且在疫情的不同阶段,没有一项研究能够在精细的空间尺度上描绘美国各地的口罩佩戴情况。

目的

迫切需要对美国佩戴口罩行为进行无偏差的时空特征描述。这些信息对于进一步评估佩戴口罩的有效性、评估疫情期间不同时间点的传播驱动因素以及通过预测疾病激增等方式指导未来的公共卫生决策至关重要。

方法

我们分析了从2020年9月至2021年5月期间来自美国各地的800多万份行为调查回复中的时空口罩佩戴模式。我们分别使用二项式回归模型和调查加权法对样本量和代表性进行调整,以得出县级层面每月的口罩佩戴行为估计值。我们还通过比较同一调查中的疫苗接种数据与县级官方记录得出的偏差测量值,对自我报告的口罩佩戴估计值进行偏差校正。最后,我们评估个人对其社会环境的认知是否能作为一种比自我报告数据偏差更小的行为监测形式。

结果

我们发现县级层面的口罩佩戴行为在城乡梯度上存在空间异质性,2021年冬季佩戴口罩的比例达到峰值,并在2021年5月急剧下降。我们的研究结果确定了针对性公共卫生措施可能最有效的地区,并表明个人佩戴口罩的频率可能受到国家指导和疾病流行率的影响。在解决了小样本量和代表性问题后,我们通过将偏差校正后的自我报告口罩佩戴估计值与社区报告的估计值进行比较,验证了我们的偏差校正方法。自我报告的行为估计值特别容易受到社会期望偏差和无回应偏差的影响,我们的研究结果表明,如果要求个人报告社区而非自身行为,这些偏差可以减少。

结论

我们的工作强调了在精细的时空尺度上描述公共卫生行为以捕捉可能驱动疫情轨迹的异质性的重要性。我们的研究结果还强调了将行为大数据纳入公共卫生应对工作需要采用标准化方法。即使是大型调查也容易出现偏差;因此,我们提倡采用社会感知方法进行行为监测,以便更准确地估计健康行为。最后,我们邀请公共卫生和行为研究界使用我们公开提供的估计值,来思考偏差校正后的行为估计值如何能增进我们对危机期间保护行为及其对疾病动态影响的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbb9/9844018/c818925b2652/nihpp-2022.07.19.22277821v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验