Tang Jiawen, Niu Yajun, Zhou Yongjian, Chen Shuqing, Yang Yan, Huang Xiao, Tian Bingbing
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, China.
Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian116026, China.
ACS Appl Mater Interfaces. 2023 Feb 1;15(4):5345-5356. doi: 10.1021/acsami.2c21133. Epub 2023 Jan 19.
Solid-state batteries based on a metallic Li anode and nonflammable solid electrolytes (SEs) are anticipated to achieve high energy and power densities with absolute safety. In particular, cubic garnet-type Nb-doped LiLaZrO (Nb-LLZO) SEs possess superior ionic conductivity, are feasible to prepare under ambient conditions, have strong thermal stability, and are of low cost. However, the interfacial compatibility with Li metal and Li dendrite hazards still hinder the applications of Nb-LLZO. Herein, a quick and efficient solution was applied to address this issue, generating a nano-LiPO pre-reduction layer from the reaction of HPO with the ion-exchanged passivation layer (LiCO/LiOH) on the surface of Nb-LLZO. A lithiophilic, electrically insulating interlayer is in situ created when the LiPO modified layer interacts with molten Li, successfully preventing the reduction of Nb. The interlayer, which mostly consists of LiP and LiPO, also has a high shear modulus and relatively high Li conductivity, which effectively inhibit the growth of Li dendrites. The Li|LiPO|Nb-LLZO|LiPO|Li symmetric cells stably cycled for over 5000 h at 0.05 mA cm and over 1000 h at a high rate of 0.15 mA cm without any short circuits. The LiFePO and S/C hybrid solid-state batteries using the modified Nb-LLZO electrolyte also demonstrated good electrochemical performances, confirming the practical application of this interfacial engineering in various solid-state battery systems. This work offers an efficient solution to the instability issue between the Nb-LLZO SE and metallic Li anode.
基于金属锂阳极和不可燃固体电解质(SEs)的固态电池有望在绝对安全的情况下实现高能量和功率密度。特别是,立方石榴石型铌掺杂的LiLaZrO(Nb-LLZO)固体电解质具有优异的离子导电性,在环境条件下易于制备,具有很强的热稳定性,且成本较低。然而,与锂金属的界面相容性以及锂枝晶危害仍然阻碍了Nb-LLZO的应用。在此,应用了一种快速有效的解决方案来解决这个问题,通过HPO与Nb-LLZO表面的离子交换钝化层(LiCO/LiOH)反应生成纳米LiPO预还原层。当LiPO改性层与熔融锂相互作用时,原位形成了一层亲锂的电绝缘中间层,成功地防止了Nb的还原。该中间层主要由LiP和LiPO组成,还具有高剪切模量和相对较高的锂导电性,有效地抑制了锂枝晶的生长。Li|LiPO|Nb-LLZO|LiPO|Li对称电池在0.05 mA cm下稳定循环超过5000小时,在0.15 mA cm的高电流密度下稳定循环超过1000小时,无任何短路现象。使用改性Nb-LLZO电解质的LiFePO和S/C混合固态电池也表现出良好的电化学性能,证实了这种界面工程在各种固态电池系统中的实际应用。这项工作为解决Nb-LLZO固体电解质与金属锂阳极之间的不稳定性问题提供了一种有效的解决方案。