Suppr超能文献

具有高表面积多孔LLZO膜的石榴石基固态锂电池。

Garnet-Based Solid-State Li Batteries with High-Surface-Area Porous LLZO Membranes.

作者信息

Zhang Huanyu, Okur Faruk, Pant Bharat, Klimpel Matthias, Butenko Sofiia, Karabay Dogan Tarik, Parrilli Annapaola, Neels Antonia, Cao Ye, Kravchyk Kostiantyn V, Kovalenko Maksym V

机构信息

Laboratory for Thin Films and Photovoltaics, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.

Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland.

出版信息

ACS Appl Mater Interfaces. 2024 Mar 13;16(10):12353-12362. doi: 10.1021/acsami.3c14422. Epub 2024 Mar 4.

Abstract

Rechargeable garnet-based solid-state Li batteries hold immense promise as nonflammable, nontoxic, and high energy density energy storage systems, employing LiLaZrO (LLZO) with a garnet-type structure as the solid-state electrolyte. Despite substantial progress in this field, the advancement and eventual commercialization of garnet-based solid-state Li batteries are impeded by void formation at the LLZO/Li interface at practical current densities and areal capacities beyond 1 mA cm and 1 mAh cm, respectively, resulting in limited cycling stability and the emergence of Li dendrites. Additionally, developing a fabrication approach for thin LLZO electrolytes to achieve high energy density remains paramount. To address these critical challenges, herein, we present a facile methodology for fabricating self-standing, 50 μm thick, porous LLZO membranes with a small pore size of ca. 2.3 μm and an average porosity of 51%, resulting in a specific surface area of 1.3 μm, the highest reported to date. The use of such LLZO membranes significantly increases the Li/LLZO contact area, effectively mitigating void formation. This methodology combines two key elements: (i) the use of small pore formers of ca. 1.5 μm and (ii) the use of ultrafast sintering, which circumvents ceramics overdensification using rapid heating/cooling rates of ca. 50 °C per second. The fabricated porous LLZO membranes demonstrate exceptional cycling stability in a symmetrical Li/LLZO/Li cell configuration, exceeding 600 h of continuous operation at a current density of 0.1 mA cm.

摘要

基于石榴石的可充电固态锂电池作为不可燃、无毒且具有高能量密度的储能系统具有巨大潜力,其采用具有石榴石型结构的LiLaZrO(LLZO)作为固态电解质。尽管该领域取得了重大进展,但基于石榴石的固态锂电池的发展及最终商业化受到实际电流密度和面积容量分别超过1 mA cm²和1 mAh cm²时LLZO/Li界面处空洞形成的阻碍,导致循环稳定性有限以及锂枝晶的出现。此外,开发用于制备薄LLZO电解质以实现高能量密度的制造方法仍然至关重要。为应对这些关键挑战,在此,我们提出了一种简便的方法来制造自立式、50μm厚、孔径约为2.3μm且平均孔隙率为51%的多孔LLZO膜,其比表面积为1.3μm²,是迄今为止报道的最高值。使用这种LLZO膜可显著增加Li/LLZO接触面积,有效减轻空洞形成。该方法结合了两个关键要素:(i)使用约1.5μm的小孔径成孔剂和(ii)使用超快烧结,通过约每秒50°C的快速加热/冷却速率避免陶瓷过度致密化。所制备的多孔LLZO膜在对称的Li/LLZO/Li电池配置中表现出优异的循环稳定性,在0.1 mA cm²的电流密度下连续运行超过600小时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/091b/10941065/d60816c3cae3/am3c14422_0001.jpg

相似文献

1
Garnet-Based Solid-State Li Batteries with High-Surface-Area Porous LLZO Membranes.
ACS Appl Mater Interfaces. 2024 Mar 13;16(10):12353-12362. doi: 10.1021/acsami.3c14422. Epub 2024 Mar 4.
2
Bilayer Dense-Porous Li La Zr O Membranes for High-Performance Li-Garnet Solid-State Batteries.
Adv Sci (Weinh). 2023 Mar;10(8):e2205821. doi: 10.1002/advs.202205821. Epub 2023 Jan 20.
3
Perspective on design and technical challenges of Li-garnet solid-state batteries.
Sci Technol Adv Mater. 2022 Jan 18;23(1):2018919. doi: 10.1080/14686996.2021.2018919. eCollection 2022.
4
On the feasibility of all-solid-state batteries with LLZO as a single electrolyte.
Sci Rep. 2022 Jan 21;12(1):1177. doi: 10.1038/s41598-022-05141-x.
5
LiLaZrO Protonation as a Means to Generate Porous/Dense/Porous-Structured Electrolytes for All-Solid-State Lithium-Metal Batteries.
ACS Appl Mater Interfaces. 2022 Oct 12;14(40):46001-46009. doi: 10.1021/acsami.2c11375. Epub 2022 Sep 27.
6
LiAlO-Assisted Low-Temperature Sintering of Dense LiLaZrO Solid Electrolyte with High Critical Current Density.
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):5989-5998. doi: 10.1021/acsami.3c17606. Epub 2024 Jan 25.
7
HPO-Induced Nano-LiPO Pre-reduction Layer to Address Instability between the Nb-Doped LiLaZrO Electrolyte and Metallic Li Anode.
ACS Appl Mater Interfaces. 2023 Feb 1;15(4):5345-5356. doi: 10.1021/acsami.2c21133. Epub 2023 Jan 19.
9
Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries.
Chem Rev. 2020 May 27;120(10):4257-4300. doi: 10.1021/acs.chemrev.9b00427. Epub 2020 Apr 9.

引用本文的文献

1
Electrochemical Performance of Li Metal Anodes in Conjunction with LLZO Solid-State Electrolyte.
Acc Mater Res. 2025 May 20;6(7):794-798. doi: 10.1021/accountsmr.5c00124. eCollection 2025 Jul 25.
2
Ultrafast Sintering of Dense LiLaZrO Membranes for Li Metal All-Solid-State Batteries.
Adv Sci (Weinh). 2025 Jan;12(2):e2412370. doi: 10.1002/advs.202412370. Epub 2024 Nov 18.
3
On the interfacial phenomena at the LiLaZrO (LLZO)/Li interface.
Commun Chem. 2024 Nov 9;7(1):257. doi: 10.1038/s42004-024-01350-9.

本文引用的文献

1
Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture.
Nat Mater. 2023 Sep;22(9):1136-1143. doi: 10.1038/s41563-023-01627-9. Epub 2023 Aug 3.
2
Bilayer Dense-Porous Li La Zr O Membranes for High-Performance Li-Garnet Solid-State Batteries.
Adv Sci (Weinh). 2023 Mar;10(8):e2205821. doi: 10.1002/advs.202205821. Epub 2023 Jan 20.
3
On the feasibility of all-solid-state batteries with LLZO as a single electrolyte.
Sci Rep. 2022 Jan 21;12(1):1177. doi: 10.1038/s41598-022-05141-x.
4
High-Temperature Ultrafast Sintering: Exploiting a New Kinetic Region to Fabricate Porous Solid-State Electrolyte Scaffolds.
Adv Mater. 2021 Aug;33(34):e2100726. doi: 10.1002/adma.202100726. Epub 2021 Jul 19.
5
Amorphous-Carbon-Coated 3D Solid Electrolyte for an Electro-Chemomechanically Stable Lithium Metal Anode in Solid-State Batteries.
Nano Lett. 2021 Jul 28;21(14):6163-6170. doi: 10.1021/acs.nanolett.1c01748. Epub 2021 Jul 14.
6
A general method to synthesize and sinter bulk ceramics in seconds.
Science. 2020 May 1;368(6490):521-526. doi: 10.1126/science.aaz7681.
7
High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion.
Sci Adv. 2019 Jun 7;5(6):eaav0129. doi: 10.1126/sciadv.aav0129. eCollection 2019 Jun.
8
Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode.
Nano Lett. 2018 Jun 13;18(6):3926-3933. doi: 10.1021/acs.nanolett.8b01295. Epub 2018 May 29.
9
Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3770-3775. doi: 10.1073/pnas.1719758115. Epub 2018 Mar 26.
10
Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12).
Angew Chem Int Ed Engl. 2007;46(41):7778-81. doi: 10.1002/anie.200701144.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验