Zhang Huanyu, Okur Faruk, Pant Bharat, Klimpel Matthias, Butenko Sofiia, Karabay Dogan Tarik, Parrilli Annapaola, Neels Antonia, Cao Ye, Kravchyk Kostiantyn V, Kovalenko Maksym V
Laboratory for Thin Films and Photovoltaics, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.
Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland.
ACS Appl Mater Interfaces. 2024 Mar 13;16(10):12353-12362. doi: 10.1021/acsami.3c14422. Epub 2024 Mar 4.
Rechargeable garnet-based solid-state Li batteries hold immense promise as nonflammable, nontoxic, and high energy density energy storage systems, employing LiLaZrO (LLZO) with a garnet-type structure as the solid-state electrolyte. Despite substantial progress in this field, the advancement and eventual commercialization of garnet-based solid-state Li batteries are impeded by void formation at the LLZO/Li interface at practical current densities and areal capacities beyond 1 mA cm and 1 mAh cm, respectively, resulting in limited cycling stability and the emergence of Li dendrites. Additionally, developing a fabrication approach for thin LLZO electrolytes to achieve high energy density remains paramount. To address these critical challenges, herein, we present a facile methodology for fabricating self-standing, 50 μm thick, porous LLZO membranes with a small pore size of ca. 2.3 μm and an average porosity of 51%, resulting in a specific surface area of 1.3 μm, the highest reported to date. The use of such LLZO membranes significantly increases the Li/LLZO contact area, effectively mitigating void formation. This methodology combines two key elements: (i) the use of small pore formers of ca. 1.5 μm and (ii) the use of ultrafast sintering, which circumvents ceramics overdensification using rapid heating/cooling rates of ca. 50 °C per second. The fabricated porous LLZO membranes demonstrate exceptional cycling stability in a symmetrical Li/LLZO/Li cell configuration, exceeding 600 h of continuous operation at a current density of 0.1 mA cm.
基于石榴石的可充电固态锂电池作为不可燃、无毒且具有高能量密度的储能系统具有巨大潜力,其采用具有石榴石型结构的LiLaZrO(LLZO)作为固态电解质。尽管该领域取得了重大进展,但基于石榴石的固态锂电池的发展及最终商业化受到实际电流密度和面积容量分别超过1 mA cm²和1 mAh cm²时LLZO/Li界面处空洞形成的阻碍,导致循环稳定性有限以及锂枝晶的出现。此外,开发用于制备薄LLZO电解质以实现高能量密度的制造方法仍然至关重要。为应对这些关键挑战,在此,我们提出了一种简便的方法来制造自立式、50μm厚、孔径约为2.3μm且平均孔隙率为51%的多孔LLZO膜,其比表面积为1.3μm²,是迄今为止报道的最高值。使用这种LLZO膜可显著增加Li/LLZO接触面积,有效减轻空洞形成。该方法结合了两个关键要素:(i)使用约1.5μm的小孔径成孔剂和(ii)使用超快烧结,通过约每秒50°C的快速加热/冷却速率避免陶瓷过度致密化。所制备的多孔LLZO膜在对称的Li/LLZO/Li电池配置中表现出优异的循环稳定性,在0.1 mA cm²的电流密度下连续运行超过600小时。