Suppr超能文献

基于自注意力学习网络的人脸超分辨率。

Self-attention learning network for face super-resolution.

机构信息

NERCMS, School of Computer Science, Wuhan University, Wuhan, 430072, Hubei, China.

NERCMS, School of Computer Science, Wuhan University, Wuhan, 430072, Hubei, China.

出版信息

Neural Netw. 2023 Mar;160:164-174. doi: 10.1016/j.neunet.2023.01.006. Epub 2023 Jan 14.

Abstract

Existing face super-resolution methods depend on deep convolutional networks (DCN) to recover high-quality reconstructed images. They either acquire information in a single space by designing complex models for direct reconstruction, or employ additional networks to extract multiple prior information to enhance the representation of features. However, existing methods are still challenging to perform well due to the inability to learn complete and uniform representations. To this end, we propose a self-attention learning network (SLNet) for three-stage face super-resolution, which fully explores the interdependence of low- and high-level spaces to achieve compensation of the information used for reconstruction. Firstly, SLNet uses a hierarchical feature learning framework to obtain shallow information in the low-level space. Then, the shallow information with cumulative errors due to DCN is improved under high-resolution (HR) supervision, while bringing an intermediate reconstruction result and a powerful intermediate benchmark. Finally, the improved feature representation is further enhanced in high-level space by a multi-scale context-aware encoder-decoder for facial reconstruction. The features in both spaces are explored progressively from coarse to fine reconstruction information. The experimental results show that SLNet has a competitive performance compared to the state-of-the-art methods.

摘要

现有的人脸超分辨率方法依赖于深度卷积网络(DCN)来恢复高质量的重建图像。它们要么通过设计复杂的模型进行直接重建来获取单一空间的信息,要么使用额外的网络来提取多个先验信息以增强特征的表示。然而,由于无法学习完整和统一的表示,现有的方法仍然难以很好地执行。为此,我们提出了一种用于三阶段人脸超分辨率的自注意力学习网络(SLNet),它充分挖掘了低维和高维空间的相互依赖关系,以实现用于重建的信息的补偿。首先,SLNet 使用分层特征学习框架来获取低水平空间中的浅层信息。然后,在高分辨率(HR)监督下,利用 DCN 中累积的错误来改进浅层信息,同时带来中间重建结果和强大的中间基准。最后,通过多尺度上下文感知编解码器在高层空间中进一步增强用于人脸重建的改进特征表示。两个空间中的特征都从粗到细的重建信息进行逐步探索。实验结果表明,与最先进的方法相比,SLNet 具有竞争性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验