Suppr超能文献

尿液游离DNA多组学检测膀胱癌患者的微小残留病并预测生存情况。

Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients.

作者信息

Chauhan Pradeep S, Shiang Alexander, Alahi Irfan, Sundby R Taylor, Feng Wenjia, Gungoren Bilge, Nawaf Cayce, Chen Kevin, Babbra Ramandeep K, Harris Peter K, Qaium Faridi, Hatscher Casey, Antiporda Anna, Brunt Lindsey, Mayer Lindsey R, Shern Jack F, Baumann Brian C, Kim Eric H, Reimers Melissa A, Smith Zachary L, Chaudhuri Aadel A

机构信息

Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.

Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

NPJ Precis Oncol. 2023 Jan 19;7(1):6. doi: 10.1038/s41698-022-00345-w.

Abstract

Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in 74 localized bladder cancer patients. We integrated ultra-low-pass whole genome sequencing (ULP-WGS) with urine cancer personalized profiling by deep sequencing (uCAPP-Seq) to achieve sensitive MRD detection and predict overall survival. Variant allele frequency, inferred tumor mutational burden, and copy number-derived tumor fraction levels in urine cell-free DNA (cfDNA) significantly predicted pathologic complete response status, far better than plasma ctDNA was able to. A random forest model incorporating these urine cfDNA-derived factors with leave-one-out cross-validation was 87% sensitive for predicting residual disease in reference to gold-standard surgical pathology. Both progression-free survival (HR = 3.00, p = 0.01) and overall survival (HR = 4.81, p = 0.009) were dramatically worse by Kaplan-Meier analysis for patients predicted by the model to have MRD, which was corroborated by Cox regression analysis. Additional survival analyses performed on muscle-invasive, neoadjuvant chemotherapy, and held-out validation subgroups corroborated these findings. In summary, we profiled urine samples from 74 patients with localized bladder cancer and used urine cfDNA multi-omics to detect MRD sensitively and predict survival accurately.

摘要

循环肿瘤DNA(ctDNA)在膀胱癌患者分子残留疾病(MRD)检测中的敏感性仍不尽人意。为解决这一问题,我们聚焦于与疾病最接近的生物流体——尿液,并分析了74例局限性膀胱癌患者的尿液肿瘤DNA。我们将超低通量全基因组测序(ULP-WGS)与尿液癌症深度测序个性化分析(uCAPP-Seq)相结合,以实现灵敏的MRD检测并预测总生存期。尿液游离DNA(cfDNA)中的变异等位基因频率、推断的肿瘤突变负荷和拷贝数衍生的肿瘤分数水平显著预测了病理完全缓解状态,远比血浆ctDNA的预测效果好。一个纳入这些尿液cfDNA衍生因素并采用留一法交叉验证的随机森林模型,在参照金标准手术病理预测残留疾病方面的敏感性为87%。对于模型预测有MRD的患者,通过Kaplan-Meier分析,无进展生存期(HR = 3.00,p = 0.01)和总生存期(HR = 4.81,p = 0.009)均显著更差,这一点得到了Cox回归分析的证实。在肌肉浸润性、新辅助化疗和验证队列亚组中进行的额外生存分析证实了这些发现。总之,我们对74例局限性膀胱癌患者的尿液样本进行了分析,并利用尿液cfDNA多组学技术灵敏地检测MRD并准确预测生存期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c577/9852243/b314712e6db3/41698_2022_345_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验