源自生物质的用于高性能赝超级电容器的碳质气凝胶和CoNiAl-LDH@CA纳米复合材料
Carbonaceous aerogel and CoNiAl-LDH@CA nanocomposites derived from biomass for high performance pseudo-supercapacitor.
作者信息
Zhang Sidi, Liu Jian, Huang Peipei, Wang Hao, Cao Changyan, Song Weiguo
机构信息
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
The Academy of Military Economics Student Brigade, Wuhan 430035, China.
出版信息
Sci Bull (Beijing). 2017 Jun 30;62(12):841-845. doi: 10.1016/j.scib.2017.05.019. Epub 2017 May 18.
Conversion of waste biomass to valuable carbonaceous material is a sustainable and environmental benign method for energy and reduction of greenhouse gas emission. Herein, a two-step hydrothermal method was developed to fabricate high performance electrode material from pomelo peels. In the first step, the pomelo peels were transformed to carbonaceous aerogel (CA), which constructed of three-dimensional, sponge-like brown monolith with hierarchical pores, low-density (0.032g/cm) and excellent mechanical flexibility. Then, the cobalt nickel aluminum layered double hydroxide (CoNiAl-LDH) was in situ loaded on the surface of CA to form exquisite core-shell structure (CoNiAl-LDH@CA) through the second hydrothermal step. When used as an electrode material for supercapacitor, CoNiAl-LDH@CA exhibited high specific capacitances of 1,134F/g at 1A/g and 902F/g at 10A/g, respectively. Furthermore, they displayed an excellent cycling stability without an obvious capacitance decrease after 4,000 cycles.
将废弃生物质转化为有价值的含碳材料是一种可持续且环境友好的能源利用和减少温室气体排放的方法。在此,开发了一种两步水热法,用于从柚子皮制备高性能电极材料。第一步,将柚子皮转化为碳质气凝胶(CA),它由三维海绵状棕色整体构成,具有分级孔隙、低密度(0.032g/cm)和出色的机械柔韧性。然后,通过第二步水热步骤,将钴镍铝层状双氢氧化物(CoNiAl-LDH)原位负载在CA表面,形成精致的核壳结构(CoNiAl-LDH@CA)。当用作超级电容器的电极材料时,CoNiAl-LDH@CA在1A/g时表现出1134F/g的高比电容,在10A/g时表现出902F/g的高比电容。此外,它们还表现出优异的循环稳定性,在4000次循环后电容没有明显下降。