Chen Xing-Yan, Li Tongcang, Yin Zhang-Qi
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China; Max-Planck-Institut für Quantenoptik, Garching 85748, Germany; Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80799, Germany.
Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA; Purdue Quantum Center, Purdue University, West Lafayette, Indiana 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA.
Sci Bull (Beijing). 2019 Mar 30;64(6):380-384. doi: 10.1016/j.scib.2019.02.018. Epub 2019 Feb 26.
The spin in a rotating frame has attracted a lot of attentions recently, as it deeply relates to both fundamental physics such as pseudo-magnetic field and geometric phase, and applications such as gyroscopic sensors. However, previous studies only focused on adiabatic limit, where the rotating frequency is much smaller than the spin frequency. Here we propose to use a levitated nano-diamond with a built-in nitrogen-vacancy (NV) center to study the dynamics and the geometric phase of a rotating electron spin without adiabatic approximation. We find that the transition between the spin levels appears when the rotating frequency is comparable to the spin frequency at zero magnetic field. Then we use Floquet theory to numerically solve the spin energy spectrum, study the spin dynamics and calculate the geometric phase under a finite magnetic field, where the rotating frequency to induce resonant transition could be greatly reduced.
旋转框架中的自旋最近引起了很多关注,因为它与诸如赝磁场和几何相位等基础物理以及诸如陀螺传感器等应用都密切相关。然而,先前的研究仅集中在绝热极限情况,即旋转频率远小于自旋频率的情况。在此,我们提议使用具有内置氮空位(NV)中心的悬浮纳米金刚石来研究旋转电子自旋的动力学和几何相位,而无需绝热近似。我们发现,在零磁场下,当旋转频率与自旋频率相当时,自旋能级之间会出现跃迁。然后我们使用弗洛凯理论对自旋能谱进行数值求解,研究自旋动力学,并计算有限磁场下的几何相位,在这种情况下,诱导共振跃迁的旋转频率可以大大降低。