Wood Alexander A, Lilette Emmanuel, Fein Yaakov Y, Tomek Nikolas, McGuinness Liam P, Hollenberg Lloyd C L, Scholten Robert E, Martin Andy M
School of Physics, University of Melbourne, Victoria 3010, Australia.
Institut für Quantenoptik, Universität Ulm, Ulm 89069, Germany.
Sci Adv. 2018 May 4;4(5):eaar7691. doi: 10.1126/sciadv.aar7691. eCollection 2018 May.
A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.
旋转坐标系中的受控量子比特为探索基础量子物理带来了新机遇,比如物理旋转坐标系中的几何相位,并且有可能增强磁场检测能力。实现一个在物理旋转过程中可测量和控制的单量子比特在实验上具有挑战性。我们展示了对一颗以200,000转每分钟旋转的钻石内部单个氮空位(NV)中心的量子控制,该旋转周期与NV自旋相干时间相当。我们通过频闪成像观察到单个NV中心除了旋转之外还进行快速圆周运动,并展示了利用激光和微波对量子比特量子态的制备、控制及读出。通过对旋转量子比特进行自旋回波干涉测量,我们能够检测到由旋转的NV轴和外部直流磁场引起的NV塞曼频移调制。我们的工作确立了钻石中的单个NV量子比特作为物理旋转坐标系中的量子传感器,并为基于钻石的单量子比特旋转传感器的实现铺平了道路。