García-Garví Antonio, Layana-Castro Pablo E, Sánchez-Salmerón Antonio-José
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain.
Comput Struct Biotechnol J. 2022 Dec 29;21:655-664. doi: 10.1016/j.csbj.2022.12.033. eCollection 2023.
In recent decades, assays with the nematode () have enabled great advances to be made in research on aging. However, performing these assays manually is a laborious task. To solve this problem, numerous assay automation techniques are being developed to increase throughput and accuracy. In this paper, a method for predicting the lifespan of nematodes using a bimodal neural network is proposed and analyzed. Specifically, the model uses the sequence of images and the count of live up to the current day to predict the lifespan curve termination. This network has been trained using a simulator to avoid the labeling costs of training such a model. In addition, a method for estimating the uncertainty of the model predictions has been proposed. Using this uncertainty, a criterion has been analyzed to decide at what point the assay could be halted and the user could rely on the model's predictions. The method has been analyzed and validated using real experiments. The results show that uncertainty is reduced from the mean lifespan and that most of the predictions obtained do not present statistically significant differences with respect to the curves obtained manually.
近几十年来,利用线虫()进行的实验在衰老研究方面取得了巨大进展。然而,手动进行这些实验是一项艰巨的任务。为了解决这个问题,人们正在开发大量的线虫实验自动化技术,以提高通量和准确性。在本文中,提出并分析了一种使用双峰神经网络预测线虫寿命的方法。具体而言,该模型使用图像序列和截至当天存活线虫的数量来预测寿命曲线的终止。该网络已使用模拟器进行训练,以避免训练此类模型的标记成本。此外,还提出了一种估计模型预测不确定性的方法。利用这种不确定性,分析了一个标准,以确定实验可以在何时停止,用户可以依赖模型的预测。该方法已通过实际实验进行了分析和验证。结果表明,与平均寿命相比,不确定性有所降低,并且获得的大多数预测与手动获得的曲线相比没有统计学上的显著差异。