Suppr超能文献

空间响应重采样(SR):在高光谱图像重采样中考虑空间点扩散函数。

Spatial response resampling (SR): Accounting for the spatial point spread function in hyperspectral image resampling.

作者信息

Inamdar Deep, Kalacska Margaret, Darko Patrick Osei, Arroyo-Mora J Pablo, Leblanc George

机构信息

Applied Remote Sensing Laboratory, Department of Geography, McGill University, Montréal, QC H3A 0B9, Canada.

Flight Research Laboratory, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada.

出版信息

MethodsX. 2023 Jan 2;10:101998. doi: 10.1016/j.mex.2023.101998. eCollection 2023.

Abstract

With the increased availability of hyperspectral imaging (HSI) data at various scales (0.03-30 m), the role of simulation is becoming increasingly important in data analysis and applications. There are few commercially available tools to spatially degrade imagery based on the spatial response of a coarser resolution sensor. Instead, HSI data are typically spatially degraded using nearest neighbor, pixel aggregate or cubic convolution approaches. Without accounting for the spatial response of the simulated sensor, these approaches yield unrealistically sharp images. This article describes the spatial response resampling (SR) workflow, a novel approach to degrade georeferenced raster HSI data based on the spatial response of a coarser resolution sensor. The workflow is open source and widely available for personal, academic or commercial use with no restrictions. The importance of the SR workflow is shown with three practical applications (data cross-validation, flight planning and data fusion of separate VNIR and SWIR images).•The SR workflow derives the point spread function of a specified HSI sensor based on nominal data acquisition parameters (e.g., integration time, altitude, speed), convolving it with a finer resolution HSI dataset for data simulation.•To make the workflow approachable for end users, we provide a MATLAB function that implements the SR methodology.

摘要

随着不同尺度(0.03 - 30米)高光谱成像(HSI)数据的可用性不断提高,模拟在数据分析和应用中的作用变得越来越重要。目前几乎没有基于低分辨率传感器空间响应在空间上降低图像分辨率的商业工具。相反,HSI数据通常使用最近邻、像素聚合或三次卷积方法在空间上进行降分辨率处理。如果不考虑模拟传感器的空间响应,这些方法会产生不切实际的清晰图像。本文介绍了空间响应重采样(SR)工作流程,这是一种基于低分辨率传感器的空间响应来降低地理参考栅格HSI数据分辨率的新方法。该工作流程是开源的,可广泛用于个人、学术或商业用途,没有任何限制。通过三个实际应用(数据交叉验证、飞行规划以及单独的可见近红外和短波红外图像的数据融合)展示了SR工作流程的重要性。

  • SR工作流程根据标称数据采集参数(如积分时间、高度、速度)得出指定HSI传感器的点扩散函数,并将其与更高分辨率的HSI数据集进行卷积以进行数据模拟。

  • 为了使最终用户能够轻松使用该工作流程,我们提供了一个实现SR方法的MATLAB函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea1b/9842868/ed9d722c8ab4/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验