Suppr超能文献

HIDSAG:用于地质冶金中监督分析的高光谱图像数据库。

HIDSAG: Hyperspectral Image Database for Supervised Analysis in Geometallurgy.

机构信息

Advanced Laboratory for Geostatistical Supercomputing (ALGES), Advanced Mining Technology Center (AMTC) - Department of Mining Engineering, University of Chile, Santiago, 8370451, Chile.

Advanced Mining Technology Center (AMTC) - Department of Mining Engineering, University of Chile, Santiago, 8370451, Chile.

出版信息

Sci Data. 2023 Mar 23;10(1):164. doi: 10.1038/s41597-023-02061-x.

Abstract

Supervised analysis using spectral data requires a well-informed characterisation of the response variables and abundant spectral data points. The presented hyperspectral dataset comes from five sets of geometallurgical samples, each characterised by different methods. To provide the spectral data, all mineral samples were scanned with SPECIM VNIR and SWIR hyperspectral cameras. For each subset the following data are provided 1) hyperspectral reflectance images in the VNIR spectral range (400-1000 nm wavelength); 2) hyperspectral reflectance images in the SWIR spectral range (900-2500 nm wavelength); 3) hyperspectral reflectance images in the VNIR-SWIR range (merged to SWIR spatial resolution); 4) RGB images constructed from hyperspectral data using a Bilateral Filter based sensor fusion method; 5) response variables representing mineral sample characterisation results, provided as training and validation data. This dataset is intended for use in general regression and classification research and experiments. All subsets were validated using machine learning models with satisfactory results.

摘要

使用光谱数据进行监督分析需要对响应变量进行充分了解,并拥有大量的光谱数据点。本高光谱数据集来自五组地质冶金样本,每个样本都采用不同的方法进行了特征描述。为了提供光谱数据,所有矿物样本都使用 SPECIM VNIR 和 SWIR 高光谱相机进行了扫描。对于每个子集,提供以下数据:1)VNIR 光谱范围内的高光谱反射率图像(400-1000nm 波长);2)SWIR 光谱范围内的高光谱反射率图像(900-2500nm 波长);3)VNIR-SWIR 范围内的高光谱反射率图像(合并到 SWIR 空间分辨率);4)使用基于双边滤波器的传感器融合方法从高光谱数据构建的 RGB 图像;5)表示矿物样本特征描述结果的响应变量,作为训练和验证数据提供。该数据集旨在用于一般回归和分类研究和实验。所有子集都使用机器学习模型进行了验证,结果令人满意。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d244/10036318/0640ed196a38/41597_2023_2061_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验