Suppr超能文献

利用计算波前进行点扩散函数估计以对高光谱成像数据进行去卷积

Point spread function estimation with computed wavefronts for deconvolution of hyperspectral imaging data.

作者信息

Zabic Miroslav, Reifenrath Michel, Wegner Charlie, Bethge Hans, Landes Timm, Rudorf Sophia, Heinemann Dag

机构信息

Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, Hannover, Germany.

Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany.

出版信息

Sci Rep. 2025 Jan 3;15(1):673. doi: 10.1038/s41598-024-84790-6.

Abstract

Hyperspectral imaging (HSI) systems acquire images with spectral information over a wide range of wavelengths but are often affected by chromatic and other optical aberrations that degrade image quality. Deconvolution algorithms can improve the spatial resolution of HSI systems, yet retrieving the point spread function (PSF) is a crucial and challenging step. To address this challenge, we have developed a method for PSF estimation in HSI systems based on computed wavefronts. The proposed technique optimizes an image quality metric by modifying the shape of a computed wavefront using Zernike polynomials and subsequently calculating the corresponding PSFs for input into a deconvolution algorithm. This enables noise-free PSF estimation for the deconvolution of HSI data, leading to significantly improved spatial resolution and spatial co-registration of spectral channels over the entire wavelength range.

摘要

高光谱成像(HSI)系统可获取具有宽波长范围内光谱信息的图像,但常常受到色差和其他光学像差的影响,这些像差会降低图像质量。去卷积算法可以提高HSI系统的空间分辨率,然而,获取点扩散函数(PSF)是关键且具有挑战性的一步。为应对这一挑战,我们开发了一种基于计算波前的HSI系统中PSF估计方法。所提出的技术通过使用泽尼克多项式修改计算波前的形状来优化图像质量指标,随后计算相应的PSF以输入到去卷积算法中。这使得能够对HSI数据进行去卷积的无噪声PSF估计,从而在整个波长范围内显著提高空间分辨率和光谱通道的空间配准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f36a/11698985/0d9f8835deac/41598_2024_84790_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验