Zabic Miroslav, Reifenrath Michel, Wegner Charlie, Bethge Hans, Landes Timm, Rudorf Sophia, Heinemann Dag
Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, Hannover, Germany.
Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany.
Sci Rep. 2025 Jan 3;15(1):673. doi: 10.1038/s41598-024-84790-6.
Hyperspectral imaging (HSI) systems acquire images with spectral information over a wide range of wavelengths but are often affected by chromatic and other optical aberrations that degrade image quality. Deconvolution algorithms can improve the spatial resolution of HSI systems, yet retrieving the point spread function (PSF) is a crucial and challenging step. To address this challenge, we have developed a method for PSF estimation in HSI systems based on computed wavefronts. The proposed technique optimizes an image quality metric by modifying the shape of a computed wavefront using Zernike polynomials and subsequently calculating the corresponding PSFs for input into a deconvolution algorithm. This enables noise-free PSF estimation for the deconvolution of HSI data, leading to significantly improved spatial resolution and spatial co-registration of spectral channels over the entire wavelength range.
高光谱成像(HSI)系统可获取具有宽波长范围内光谱信息的图像,但常常受到色差和其他光学像差的影响,这些像差会降低图像质量。去卷积算法可以提高HSI系统的空间分辨率,然而,获取点扩散函数(PSF)是关键且具有挑战性的一步。为应对这一挑战,我们开发了一种基于计算波前的HSI系统中PSF估计方法。所提出的技术通过使用泽尼克多项式修改计算波前的形状来优化图像质量指标,随后计算相应的PSF以输入到去卷积算法中。这使得能够对HSI数据进行去卷积的无噪声PSF估计,从而在整个波长范围内显著提高空间分辨率和光谱通道的空间配准。