Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195Berlin, Germany.
Department of Physics, Freie Universität Berlin, Arnimallee 12, 14195Berlin, Germany.
J Chem Theory Comput. 2023 Feb 14;19(3):942-952. doi: 10.1021/acs.jctc.3c00016. Epub 2023 Jan 20.
Coarse-grained (CG) molecular simulations have become a standard tool to study molecular processes on time and length scales inaccessible to all-atom simulations. Parametrizing CG force fields to match all-atom simulations has mainly relied on force-matching or relative entropy minimization, which require many samples from costly simulations with all-atom or CG resolutions, respectively. Here we present , a new training method for CG force fields that combines the advantages of both methods by leveraging normalizing flows, a generative deep learning method. Flow-matching first trains a normalizing flow to represent the CG probability density, which is equivalent to minimizing the relative entropy without requiring iterative CG simulations. Subsequently, the flow generates samples and forces according to the learned distribution in order to train the desired CG free energy model via force-matching. Even without requiring forces from the all-atom simulations, flow-matching outperforms classical force-matching by an order of magnitude in terms of data efficiency and produces CG models that can capture the folding and unfolding transitions of small proteins.
粗粒化(CG)分子模拟已成为研究时间和长度尺度上无法通过全原子模拟访问的分子过程的标准工具。将 CG 力场参数化以匹配全原子模拟主要依赖于力匹配或相对熵最小化,这分别需要来自全原子或 CG 分辨率的昂贵模拟的大量样本。在这里,我们提出了一种新的 CG 力场训练方法,该方法通过利用生成式深度学习方法——归一化流,结合了这两种方法的优势。流匹配首先训练一个归一化流来表示 CG 概率密度,这相当于在不要求迭代 CG 模拟的情况下最小化相对熵。随后,流根据所学习的分布生成样本和力,以便通过力匹配训练所需的 CG 自由能模型。即使不要求全原子模拟的力,流匹配在数据效率方面也比经典的力匹配高出一个数量级,并产生能够捕捉小分子折叠和展开转变的 CG 模型。