Suppr超能文献

筛选噪音:扩散概率模型及其在生物分子中的应用综述

Sifting through the noise: A survey of diffusion probabilistic models and their applications to biomolecules.

作者信息

Norton Trevor, Bhattacharya Debswapna

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States.

Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States.

出版信息

J Mol Biol. 2025 Mar 15;437(6):168818. doi: 10.1016/j.jmb.2024.168818. Epub 2024 Oct 9.

Abstract

Diffusion probabilistic models have made their way into a number of high-profile applications since their inception. In particular, there has been a wave of research into using diffusion models in the prediction and design of biomolecular structures and sequences. Their growing ubiquity makes it imperative for researchers in these fields to understand them. This paper serves as a general overview for the theory behind these models and the current state of research. We first introduce diffusion models and discuss common motifs used when applying them to biomolecules. We then present the significant outcomes achieved through the application of these models in generative and predictive tasks. This survey aims to provide readers with a comprehensive understanding of the increasingly critical role of diffusion models.

摘要

自扩散概率模型诞生以来,已在许多备受瞩目的应用中崭露头角。特别是,出现了一股利用扩散模型进行生物分子结构和序列预测与设计的研究热潮。它们的日益普及使得这些领域的研究人员必须了解它们。本文对这些模型背后的理论和当前研究现状进行了总体概述。我们首先介绍扩散模型,并讨论将其应用于生物分子时常用的模式。然后,我们展示了通过将这些模型应用于生成和预测任务所取得的重大成果。本综述旨在使读者全面了解扩散模型日益关键的作用。

相似文献

2
Diffusion models in medical imaging: A comprehensive survey.扩散模型在医学成像中的应用:全面综述。
Med Image Anal. 2023 Aug;88:102846. doi: 10.1016/j.media.2023.102846. Epub 2023 May 23.
3
Diffusion Models in Vision: A Survey.视觉中的扩散模型:综述
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):10850-10869. doi: 10.1109/TPAMI.2023.3261988. Epub 2023 Aug 7.
10
Diffusion Models in Low-Level Vision: A Survey.低层次视觉中的扩散模型:一项综述。
IEEE Trans Pattern Anal Mach Intell. 2025 Jun;47(6):4630-4651. doi: 10.1109/TPAMI.2025.3545047. Epub 2025 May 7.

本文引用的文献

3
An all-atom protein generative model.全原子蛋白质生成模型。
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311500121. doi: 10.1073/pnas.2311500121. Epub 2024 Jun 25.
9
Protein structure generation via folding diffusion.通过折叠扩散生成蛋白质结构
Nat Commun. 2024 Feb 5;15(1):1059. doi: 10.1038/s41467-024-45051-2.
10
Score-based generative modeling for de novo protein design.基于得分的从头蛋白质设计生成模型。
Nat Comput Sci. 2023 May;3(5):382-392. doi: 10.1038/s43588-023-00440-3. Epub 2023 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验