Suppr超能文献

血浆蛋白质生物标志物的蛋白质组学发现和预测高级别浆液性卵巢癌预后模型的建立。

Proteomic Discovery of Plasma Protein Biomarkers and Development of Models Predicting Prognosis of High-Grade Serous Ovarian Carcinoma.

机构信息

Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea.

Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.

出版信息

Mol Cell Proteomics. 2023 Mar;22(3):100502. doi: 10.1016/j.mcpro.2023.100502. Epub 2023 Jan 17.

Abstract

Ovarian cancer is one of the most lethal female cancers. For accurate prognosis prediction, this study aimed to investigate novel, blood-based prognostic biomarkers for high-grade serous ovarian carcinoma (HGSOC) using mass spectrometry-based proteomics methods. We conducted label-free liquid chromatography-tandem mass spectrometry using frozen plasma samples obtained from patients with newly diagnosed HGSOC (n = 20). Based on progression-free survival (PFS), the samples were divided into two groups: good (PFS ≥18 months) and poor prognosis groups (PFS <18 months). Proteomic profiles were compared between the two groups. Referring to proteomics data that we previously obtained using frozen cancer tissues from chemotherapy-naïve patients with HGSOC, overlapping protein biomarkers were selected as candidate biomarkers. Biomarkers were validated using an independent set of HGSOC plasma samples (n = 202) via enzyme-linked immunosorbent assay (ELISA). To construct models predicting the 18-month PFS rate, we performed stepwise selection based on the area under the receiver operating characteristic curve (AUC) with 5-fold cross-validation. Analysis of differentially expressed proteins in plasma samples revealed that 35 and 61 proteins were upregulated in the good and poor prognosis groups, respectively. Through hierarchical clustering and bioinformatic analyses, GSN, VCAN, SND1, SIGLEC14, CD163, and PRMT1 were selected as candidate biomarkers and were subjected to ELISA. In multivariate analysis, plasma GSN was identified as an independent poor prognostic biomarker for PFS (adjusted hazard ratio, 1.556; 95% confidence interval, 1.073-2.256; p = 0.020). By combining clinical factors and ELISA results, we constructed several models to predict the 18-month PFS rate. A model consisting of four predictors (FIGO stage, residual tumor after surgery, and plasma levels of GSN and VCAN) showed the best predictive performance (mean validated AUC, 0.779). The newly developed model was converted to a nomogram for clinical use. Our study results provided insights into protein biomarkers, which might offer clues for developing therapeutic targets.

摘要

卵巢癌是女性中最致命的癌症之一。为了进行准确的预后预测,本研究旨在使用基于质谱的蛋白质组学方法来研究新型的、基于血液的高级别浆液性卵巢癌(HGSOC)预后生物标志物。我们使用冷冻血浆样本进行无标记液相色谱-串联质谱分析,这些样本来自新诊断为 HGSOC 的患者(n=20)。根据无进展生存期(PFS),将样本分为两组:预后良好组(PFS≥18 个月)和预后不良组(PFS<18 个月)。比较两组之间的蛋白质组学图谱。参考我们之前使用来自化疗初治 HGSOC 患者的冷冻肿瘤组织获得的蛋白质组学数据,选择重叠的蛋白质生物标志物作为候选生物标志物。通过酶联免疫吸附试验(ELISA)在独立的 HGSOC 血浆样本组(n=202)中验证生物标志物。为了构建预测 18 个月 PFS 率的模型,我们使用 5 倍交叉验证的接收者操作特征曲线(AUC)进行逐步选择。对血浆样本中差异表达蛋白的分析表明,在预后良好和不良组中,分别有 35 个和 61 个蛋白上调。通过层次聚类和生物信息学分析,选择 GSN、VCAN、SND1、SIGLEC14、CD163 和 PRMT1 作为候选生物标志物,并进行 ELISA 分析。在多变量分析中,血浆 GSN 被确定为 PFS 的独立不良预后生物标志物(调整后的危险比,1.556;95%置信区间,1.073-2.256;p=0.020)。通过结合临床因素和 ELISA 结果,我们构建了几个预测 18 个月 PFS 率的模型。由四个预测因子(FIGO 分期、手术后残留肿瘤、以及 GSN 和 VCAN 的血浆水平)组成的模型表现出最佳的预测性能(验证 AUC 的平均值为 0.779)。新开发的模型被转换为一个列线图,用于临床使用。我们的研究结果提供了蛋白质生物标志物的见解,这可能为治疗靶点的开发提供线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a4a/9972571/33dcf27d340f/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验