Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
J Ovarian Res. 2024 Aug 2;17(1):159. doi: 10.1186/s13048-024-01482-5.
The clinicopathological parameters such as residual tumor, grade, the International Federation of Gynecology and Obstetrics (FIGO) score are often used to predict the survival of ovarian cancer patients, but the 5-year survival of high grade serous ovarian cancer (HGSOC) still remains around 30%. Hence, the relentless pursuit of enhanced prognostic tools for HGSOC, this study introduces an unprecedented gene expression-based molecular prognostic score (mPS). Derived from a novel 20-gene signature through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression, the mPS stands out for its predictive prowess.
Validation across diverse datasets, including training and test sets (n = 491 each) and a large HGSOC patient cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium (n = 7542), consistently shows an area-under-curve (AUC) around 0.7 for predicting 5-year overall survival. The mPS's impact on prognosis resonates profoundly, yielding an adjusted hazard-ratio (HR) of 6.1 (95% CI: 3.65-10.3; p < 0.001), overshadowing conventional parameters-FIGO score, residual disease, and age. Molecular insights gleaned from mPS stratification uncover intriguing pathways, with focal-adhesion, Wnt, and Notch signaling upregulated, and antigen processing and presentation downregulated (p < 0.001) in high-risk HGSOC cohorts.
Positioned as a robust prognostic marker, the 20-gene signature-derived mPS emerges as a potential game-changer in clinical settings. Beyond its role in predicting overall survival, its implications extend to guiding alternative therapies, especially targeting Wnt/Notch signaling pathways and immune evasion-a promising avenue for improving outcomes in high-risk HGSOC patients.
临床病理参数,如残余肿瘤、分级、国际妇产科联盟(FIGO)评分,常被用于预测卵巢癌患者的生存情况,但高级别浆液性卵巢癌(HGSOC)的 5 年生存率仍徘徊在 30%左右。因此,人们一直致力于寻找更有效的 HGSOC 预后工具,本研究提出了一种前所未有的基于基因表达的分子预后评分(mPS)。该评分由最小绝对值收缩和选择算子(LASSO)-Cox 回归衍生的一个 20 基因新特征得出,具有出色的预测能力。
在包括训练集和测试集(n=491 例)以及来自卵巢肿瘤组织分析(OTTA)联盟的大型 HGSOC 患者队列(n=7542)的多个数据集的验证中,mPS 预测 5 年总生存率的曲线下面积(AUC)均约为 0.7。mPS 对预后的影响显著,调整后的危险比(HR)为 6.1(95%CI:3.65-10.3;p<0.001),超过了传统参数-FIGO 评分、残余疾病和年龄。mPS 分层得出的分子见解揭示了有趣的途径,高风险 HGSOC 队列中,粘着斑、Wnt 和 Notch 信号上调,抗原加工和呈递下调(p<0.001)。
作为一种强大的预后标志物,由 20 个基因特征衍生的 mPS 有望成为临床实践中的变革者。除了预测总生存率外,其意义还扩展到指导替代治疗,特别是靶向 Wnt/Notch 信号通路和免疫逃逸,这为改善高危 HGSOC 患者的预后提供了有前途的途径。