分子预后评分,用于高级别浆液性卵巢癌风险分层的分类器。
The molecular prognostic score, a classifier for risk stratification of high-grade serous ovarian cancer.
机构信息
Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
出版信息
J Ovarian Res. 2024 Aug 2;17(1):159. doi: 10.1186/s13048-024-01482-5.
BACKGROUND
The clinicopathological parameters such as residual tumor, grade, the International Federation of Gynecology and Obstetrics (FIGO) score are often used to predict the survival of ovarian cancer patients, but the 5-year survival of high grade serous ovarian cancer (HGSOC) still remains around 30%. Hence, the relentless pursuit of enhanced prognostic tools for HGSOC, this study introduces an unprecedented gene expression-based molecular prognostic score (mPS). Derived from a novel 20-gene signature through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression, the mPS stands out for its predictive prowess.
RESULTS
Validation across diverse datasets, including training and test sets (n = 491 each) and a large HGSOC patient cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium (n = 7542), consistently shows an area-under-curve (AUC) around 0.7 for predicting 5-year overall survival. The mPS's impact on prognosis resonates profoundly, yielding an adjusted hazard-ratio (HR) of 6.1 (95% CI: 3.65-10.3; p < 0.001), overshadowing conventional parameters-FIGO score, residual disease, and age. Molecular insights gleaned from mPS stratification uncover intriguing pathways, with focal-adhesion, Wnt, and Notch signaling upregulated, and antigen processing and presentation downregulated (p < 0.001) in high-risk HGSOC cohorts.
CONCLUSION
Positioned as a robust prognostic marker, the 20-gene signature-derived mPS emerges as a potential game-changer in clinical settings. Beyond its role in predicting overall survival, its implications extend to guiding alternative therapies, especially targeting Wnt/Notch signaling pathways and immune evasion-a promising avenue for improving outcomes in high-risk HGSOC patients.
背景
临床病理参数,如残余肿瘤、分级、国际妇产科联盟(FIGO)评分,常被用于预测卵巢癌患者的生存情况,但高级别浆液性卵巢癌(HGSOC)的 5 年生存率仍徘徊在 30%左右。因此,人们一直致力于寻找更有效的 HGSOC 预后工具,本研究提出了一种前所未有的基于基因表达的分子预后评分(mPS)。该评分由最小绝对值收缩和选择算子(LASSO)-Cox 回归衍生的一个 20 基因新特征得出,具有出色的预测能力。
结果
在包括训练集和测试集(n=491 例)以及来自卵巢肿瘤组织分析(OTTA)联盟的大型 HGSOC 患者队列(n=7542)的多个数据集的验证中,mPS 预测 5 年总生存率的曲线下面积(AUC)均约为 0.7。mPS 对预后的影响显著,调整后的危险比(HR)为 6.1(95%CI:3.65-10.3;p<0.001),超过了传统参数-FIGO 评分、残余疾病和年龄。mPS 分层得出的分子见解揭示了有趣的途径,高风险 HGSOC 队列中,粘着斑、Wnt 和 Notch 信号上调,抗原加工和呈递下调(p<0.001)。
结论
作为一种强大的预后标志物,由 20 个基因特征衍生的 mPS 有望成为临床实践中的变革者。除了预测总生存率外,其意义还扩展到指导替代治疗,特别是靶向 Wnt/Notch 信号通路和免疫逃逸,这为改善高危 HGSOC 患者的预后提供了有前途的途径。