Couture Etienne J, Laferrière-Langlois Pascal, Denault André
Departments of Anaesthesiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada.
Department of Anaesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital, Université de Montréal, Montréal, Québec, Canada.
Can J Cardiol. 2023 Apr;39(4):432-443. doi: 10.1016/j.cjca.2023.01.012. Epub 2023 Jan 18.
Hemodynamic monitoring is a cornerstone in the assessment of patients with circulatory shock. Timely recognition of hemodynamic compromise and proper optimisation is essential to ensure adequate tissue perfusion and maintain renal, hepatic, abdominal, and cerebral functions. Hemodynamic monitoring has significantly evolved since the first inception of the pulmonary artery catheter more than 50 years ago. Bedside echocardiography, when combined with noninvasive and minimally invasive technologies, provides tools to monitor and quantify the cardiac output to promptly react and improve hemodynamic management in an acute care setting. Commonly used technologies include noninvasive pulse-wave analysis, pulse-wave transit time, thoracic bioimpedance and bioreactance, esophageal Doppler, minimally invasive pulse-wave analysis, transpulmonary thermodilution, and pulmonary artery catheter. These monitoring strategies are reviewed here, along with detailed analysis of their operating mode, particularities, and limitations. The use of artificial intelligence to enhance performance and effectiveness of hemodynamic monitoring is reviewed to apprehend future possibilities.
血流动力学监测是评估循环性休克患者的基石。及时识别血流动力学受损情况并进行适当优化对于确保充足的组织灌注以及维持肾脏、肝脏、腹部和大脑功能至关重要。自50多年前肺动脉导管首次问世以来,血流动力学监测有了显著发展。床边超声心动图与非侵入性和微创技术相结合,提供了监测和量化心输出量的工具,以便在急性护理环境中迅速做出反应并改善血流动力学管理。常用技术包括非侵入性脉搏波分析、脉搏波传播时间、胸阻抗和生物反应、食管多普勒、微创脉搏波分析、经肺热稀释法以及肺动脉导管。本文将对这些监测策略进行综述,并详细分析其操作模式、特点和局限性。还将综述利用人工智能提高血流动力学监测性能和有效性的情况,以展望未来的可能性。