The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW 2007, Australia.
Biomolecules. 2023 Jan 9;13(1):134. doi: 10.3390/biom13010134.
Tubulin superfamily (TSF) proteins are widespread, and are known for their multifaceted roles as cytoskeletal proteins underpinning many basic cellular functions, including morphogenesis, division, and motility. In eukaryotes, tubulin assembles into microtubules, a major component of the dynamic cytoskeletal network of fibres, whereas the bacterial homolog FtsZ assembles the division ring at midcell. The functions of the lesser-known archaeal TSF proteins are beginning to be identified and show surprising diversity, including homologs of tubulin and FtsZ as well as a third archaea-specific family, CetZ, implicated in the regulation of cell shape and possibly other unknown functions. In this study, we define sequence and structural characteristics of the CetZ family and CetZ1 and CetZ2 subfamilies, identify CetZ groups and diversity amongst archaea, and identify potential functional relationships through analysis of the genomic neighbourhoods of genes. We identified at least three subfamilies of orthologous CetZ proteins in the archaeal class Halobacteria, including CetZ1 and CetZ2 as well as a novel uncharacterized subfamily. CetZ1 and CetZ2 were correlated to one another as well as to cell shape and motility phenotypes across diverse Halobacteria. Among other known CetZ clusters in orders Archaeoglobales, Methanomicrobiales, Methanosarcinales, and Thermococcales, an additional uncharacterized group from Archaeoglobales and Methanomicrobiales is affiliated strongly with Halobacteria CetZs, suggesting that they originated via horizontal transfer. Subgroups of Halobacteria CetZ2 and Thermococcales CetZ genes were found adjacent to different type IV pili regulons, suggesting potential utilization of CetZs by type IV systems. More broadly conserved gene neighbourhoods include nucleotide and cofactor biosynthesis (e.g., F) and predicted cell surface sugar epimerase genes. These findings imply that CetZ subfamilies are involved in multiple functions linked to the cell surface, biosynthesis, and motility.
微管超家族(TSF)蛋白广泛存在,其作为细胞骨架蛋白的多方面作用得到了广泛的认识,这些作用是许多基本细胞功能的基础,包括形态发生、分裂和运动。在真核生物中,微管组装成微管,这是纤维状动态细胞骨架网络的主要成分,而细菌同源物 FtsZ 则在细胞中部组装分裂环。鲜为人知的古菌 TSF 蛋白的功能开始被识别,显示出惊人的多样性,包括微管和 FtsZ 的同源物以及第三组古菌特有的家族 CetZ,其与细胞形状的调节有关,可能还有其他未知的功能。在这项研究中,我们定义了 CetZ 家族和 CetZ1 和 CetZ2 亚家族的序列和结构特征,确定了 CetZ 组和古菌中的多样性,并通过分析基因的基因组邻域来识别潜在的功能关系。我们在古菌 Halobacteria 目中至少鉴定出三个同源 CetZ 蛋白的亚家族,包括 CetZ1 和 CetZ2 以及一个新的未鉴定的亚家族。CetZ1 和 CetZ2 彼此相关,也与不同的 Halobacteria 中的细胞形状和运动表型相关。在其他已知的 Archaeoglobales、Methanomicrobiales、Methanosarcinales 和 Thermococcales 目中的 CetZ 簇中,来自 Archaeoglobales 和 Methanomicrobiales 的另一个未鉴定的簇与 Halobacteria CetZs 密切相关,这表明它们是通过水平转移起源的。Halobacteria CetZ2 和 Thermococcales CetZ 基因的亚组被发现在不同的 IV 型菌毛调控子附近,这表明 CetZ 可能被 IV 型系统利用。更广泛保守的基因邻域包括核苷酸和辅助因子生物合成(如 F)和预测的细胞表面糖差向异构酶基因。这些发现表明 CetZ 亚家族参与了与细胞表面、生物合成和运动相关的多种功能。