Suppr超能文献

新型粉碎式 3D 多细胞模拟系统,用于综合生物学 CAD,整合了随机 Gillespie 模拟,经过拓扑可变 SBML 模型基准测试。

Novel Ground-Up 3D Multicellular Simulators for Synthetic Biology CAD Integrating Stochastic Gillespie Simulations Benchmarked with Topologically Variable SBML Models.

机构信息

Department of Computer Science, University of Bradford, Bradford BD7 1DP, UK.

出版信息

Genes (Basel). 2023 Jan 6;14(1):154. doi: 10.3390/genes14010154.

Abstract

The elevation of Synthetic Biology from single cells to multicellular simulations would be a significant scale-up. The spatiotemporal behavior of cellular populations has the potential to be prototyped in silico for computer assisted design through ergonomic interfaces. Such a platform would have great practical potential across medicine, industry, research, education and accessible archiving in bioinformatics. Existing Synthetic Biology CAD systems are considered limited regarding population level behavior, and this work explored the in silico challenges posed from biological and computational perspectives. Retaining the connection to Synthetic Biology CAD, an extension of the Infobiotics Workbench Suite was considered, with potential for the integration of genetic regulatory models and/or chemical reaction networks through Next Generation Stochastic Simulator (NGSS) Gillespie algorithms. These were executed using SBML models generated by in-house SBML-Constructor over numerous topologies and benchmarked in association with multicellular simulation layers. Regarding multicellularity, two ground-up multicellular solutions were developed, including the use of Unreal Engine 4 contrasted with CPU multithreading and Blender visualization, resulting in a comparison of real-time versus batch-processed simulations. In conclusion, high-performance computing and client-server architectures could be considered for future works, along with the inclusion of numerous biologically and physically informed features, whilst still pursuing ergonomic solutions.

摘要

将合成生物学从单细胞提升到多细胞模拟将是一个重大的扩展。细胞群体的时空行为有可能通过人体工程学接口在计算机辅助设计中进行计算机原型设计。这样的平台在医学、工业、研究、教育和生物信息学的可访问存档方面具有巨大的实际潜力。现有的合成生物学 CAD 系统被认为在群体水平行为方面存在局限性,本工作从生物学和计算的角度探讨了计算机模拟所面临的挑战。在保留与合成生物学 CAD 的连接的情况下,考虑了 Infobiotics Workbench Suite 的扩展,通过下一代随机模拟器 (NGSS) Gillespie 算法具有整合遗传调控模型和/或化学反应网络的潜力。这些使用内部 SBML-Constructor 生成的 SBML 模型在多种拓扑结构上执行,并与多细胞模拟层进行了基准测试。关于多细胞性,开发了两种从底层开始的多细胞解决方案,包括使用虚幻引擎 4 与 CPU 多线程和 Blender 可视化进行对比,从而对实时模拟与批处理模拟进行了比较。总之,未来的工作可以考虑高性能计算和客户端-服务器架构,同时包含许多具有生物学和物理意义的特性,同时仍然追求人体工程学解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db73/9859520/2b754573214a/genes-14-00154-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验